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Determinants of the Laplace and other elliptic operators on compact manifolds
have been an object of study for many years (see [MP, RS, Vor]). Up until now,
however, the theory of determinants has not been extended to non-compact
situations, since these typically involve a mixture of discrete and continuous
spectra. Recent advances in this theory, which are partially motivated by
developments in mathematical physics, have led to a connection, in the compact
Riemann surface case, between determinants of Laplacians on spinors and the
Selberg zeta function of the underlying surface (see [DP, Kie, Sar, Vor]).

Our purpose in this paper is to introduce a notion of determinants on non-
compact (finite volume) Riemann surfaces. These will be associated to the
Laplacian A shifted by a parameter 5(1—5), and will be defined in terms of a
Dirichlet series ζ(w,s) which is a sum that represents the discrete as well as the
continuous spectrum. It will be seen to be regular at w = 0, and our main theorem

) as the Selberg zeta function of the
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(see Sect. 1) will express exp — —— ζ(w, s)

surface times the appropriate Γ-factor.

1.

Let M = Γ\H be a non-compact, finite volume surface obtained as the quotient of
the upper half plane H by a discrete subgroup Γ of PSL2(R). For simplicity we
assume that Γ has no fixed points. Let χ be a unitary character of Γ. We consider
the spectral problem

Af+λf=09 f(yz) = χ(y)f(z) (yeΓ,zeH), J \f(z)\2dz< oo. (1.1)
M

Here Δ = y2\ -^- + -r-^ I is the Laplacian of H. In addition to a discrete spectrum
\dy2 dx2j

0 ̂  Λ,o = ̂ i = , this set-up gives rise to a continuous spectrum as well, as we now
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