

Stochastic Schrödinger Operators and Jacobi Matrices on the Strip

S. Kotani¹ and B. Simon²*

- ¹ Department of Mathematics, University of Tokyo, Tokyo, Japan
- ² Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125

Abstract. We discuss stochastic Schrödinger operators and Jacobi matrices with wave functions, taking values in \mathbb{C}^l so there are 2l Lyaponov exponents $\gamma_1 \geq \cdots \geq \gamma_l \geq 0 \geq \gamma_{l+1} \geq \cdots \geq \gamma_{2l} = -\gamma_1$. Our results include the fact that if $\gamma_1 = 0$ on a set positive measure, then V is deterministic and one that says that $\{E | \text{exactly } 2j \ \gamma \text{'s are zero}\}$ is the essential support of the a.c. spectrum of multiplicity 2j.

1. Introduction

This paper discusses stochastic Schrödinger operators (see [4, 20, 7] for background) on \mathbb{R} , that is

$$H_{\omega} = -\frac{d^2}{dx^2} + V_{\omega}(x) \tag{1.1}$$

on $L^2(\mathbb{R}, dx)$, and its discrete analog:

$$(h_{\omega}u)(n) = u(n+1) + u(n-1) + V_{\omega}(n)u(n)$$
(1.2)

on $l^2(\mathbb{Z})$, where V_{ω} is a stochastic process. Several years ago, one of us (SK) [10] developed a set of ideas relating *m*-functions, the Lyaponov exponent and absolutely continuous spectrum for (1.1), and subsequently, the other of us (B.S.) [19] extended the ideas of [10] to equations of the form (1.2). Among the results were $(\gamma = \text{Lyaponov exponent})$:

- (a_0) $\{E|\gamma(E)=0\}\equiv A$ is the essential support of $d\mu_{\rm ac}^{\omega}$.
- (b₀) If A containts an open interval, I, then $\sigma(H_{\omega}) \upharpoonright I$ is purely absolutely continuous
 - (c₀) If |A| > 0 ($|\cdot|$ = Lebesgue measure), then V_{ω} is deterministic.

Our goal here is to discuss these results for operators on strips. The basic operator (1.2) on a strip is defined by considering a connected set $S \subset \mathbb{Z}^{\nu-1}$

^{*} Research partially supported by USNSF under grant DMS-8416049