Random Walk in Random Environment: A Counterexample?

Maury Bramson ${ }^{1 \star}$ and Richard Durrett ${ }^{2 \star \star}$
${ }^{1}$ School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
${ }^{2}$ Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Abstract

We describe a family of random walks in random environments which have exponentially decaying correlations, nearest neighbor transition probabilities which are bounded away from 0 , and yet are subdiffusive in any dimension $d<\infty$.

1. Introduction

Random walks in random environments have been the subject of much attention in recent years in connection with $1 / f$ noise [1] and as disordered systems of interest in their own right. They have been studied by various nonrigorous methods: Monte Carlo studies [2], series expansions [3,4], and the renormalization group [5-7]; some special models have been analyzed rigorously $[8,9]$. Here we have cited only papers about the model in dimensions $d>1$; the literature concerning the one dimensional problem is too large to catalogue.

At this point a consensus has developed [2,3,5-7] that for a model with short range correlations, two is the upper critical dimension for the problem: for $d>2$ the mean square displacement will be asymptotically linear in time (i.e., normal diffusive behavior), while for $d<2$ the behavior is subdiffusive. The point of this paper is to describe an example which casts some doubt on the universality of the last conclusion. Specifically, we describe a family of models with spatially homogeneous random environments which have exponentially decaying correlations and nearest neighbor transition probabilities bounded away from 0 so that a random walk in any of these random environments is subdiffusive in any dimension $d<\infty$.

The models we will consider are a special case of what we have called [9] random walk on a random hillside. In these systems one starts with a random

[^0]
[^0]: * This author partially supported by NSF grant DMS 83-1080
 ** This author partially supported by NSF grant DMS-85-05020 and the Army Research Office through the Mathematical Sciences Institute at Cornell University

