Moduli Spaces of Curves and Representation Theory

E. Arbarello¹, C. De Concini², V. G. Kac³, and C. Procesi¹

¹ Dipartimento di Matematica, Universita Degli Studi di Roma "La Sapienza", Rome, Italy

² Dipartimento di Matematica, Universita di Roma II "Tor Vergata", Rome, Italy

³ Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

Abstract. We establish a canonical isomorphism between the second cohomology of the Lie algebra of regular differential operators on \mathbb{C}^{\times} of degree ≤ 1 , and the second singular cohomology of the moduli space $\widehat{\mathscr{F}}_{g-1}$ of quintuples $(C, p, z, L, [\varphi])$, where C is a smooth genus g Riemann surface, p a point on C, z a local parameter at p, L a degree g-1 line bundle on C, and $[\varphi]$ a class of local trivializations of L at p which differ by a non-zero factor. The construction uses an interplay between various infinite-dimensional manifolds based on the topological space H of germs of holomorphic functions in a neighborhood of 0 in \mathbb{C}^{\times} and related topological spaces. The basic tool is a canonical map from $\widehat{\mathscr{F}}_{g-1}$ to the infinite-dimensional Grassmannian of subspaces of H, which is the orbit of the subspace H_{-} of holomorphic functions on \mathbb{C}^{\times} vanishing at ∞ , under the group Aut H. As an application, we give a Lie-algebraic proof of the Mumford formula: $\lambda_n = (6n^2 - 6n + 1)\lambda_1$, where λ_n is the determinant line bundle of the vector bundle on the moduli space of curves of genus g, whose fiber over C is the space of differentials of degree n on C.

Introduction

Consider the Lie algebra $\mathscr{D}^F(F$ for finite) of regular differential operators of degree less than or equal to 1 on \mathbb{C}^{\times} and its subalgebra \mathbf{d}^F of vector fields, so that $\left\{z^j, d_j = z^{j+1} \frac{d}{dz}\right\}_{j \in \mathbb{Z}}$ is a basis of \mathscr{D}^F and $\{d_j\}_{n \in \mathbb{Z}}$ is a basis of \mathbf{d}^F . The Lie algebra \mathscr{D}^F acts in a natural way on the space V_n of regular differentials of degree n on \mathbb{C}^{\times} with basis $v_k = z^{-k} dz^n$, $k \in \mathbb{Z}$. This gives an inclusion

$$\phi_n: \mathscr{D}^F \to \mathbf{a}_\infty^F,$$

where \mathbf{a}_{∞}^{F} is the Lie algebra of matrices $(a_{ij})_{i, j \in \mathbb{Z}}$ such that $a_{ij} = 0$ for $|i-j| \ge 0$. We also consider the restriction of ϕ_n to \mathbf{d}^{F} :

$$\varrho_n: \mathbf{d}^F \to \mathbf{a}_\infty^F$$
.