Moduli Spaces of Curves and Representation Theory

E. Arbarello ${ }^{1}$, C. De Concini ${ }^{2}$, V. G. Kac 3, and C. Procesi ${ }^{1}$
${ }^{1}$ Dipartimento di Matematica, Universita Degli Studi di Roma "La Sapienza", Rome, Italy
${ }^{2}$ Dipartimento di Matematica, Universita di Roma II "Tor Vergata", Rome, Italy
${ }^{3}$ Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

Abstract

We establish a canonical isomorphism between the second cohomology of the Lie algebra of regular differential operators on \mathbb{C}^{\times}of degree $\leqq 1$, and the second singular cohomology of the moduli space $\widehat{\mathscr{F}}_{g-1}$ of quintuples ($C, p, z, L,[\varphi]$), where C is a smooth genus g Riemann surface, p a point on C, z a local parameter at p, L a degree $g-1$ line bundle on C, and $[\varphi]$ a class of local trivializations of L at p which differ by a non-zero factor. The construction uses an interplay between various infinite-dimensional manifolds based on the topological space H of germs of holomorphic functions in a neighborhood of 0 in \mathbb{C}^{\times}and related topological spaces. The basic tool is a canonical map from $\hat{\mathscr{F}}_{g-1}$ to the infinite-dimensional Grassmannian of subspaces of H, which is the orbit of the subspace H_{-}of holomorphic functions on \mathbb{C}^{\times}vanishing at ∞, under the group Aut H. As an application, we give a Lie-algebraic proof of the Mumford formula: $\lambda_{n}=\left(6 n^{2}-6 n+1\right) \lambda_{1}$, where λ_{n} is the determinant line bundle of the vector bundle on the moduli space of curves of genus g, whose fiber over C is the space of differentials of degree n on C.

Introduction

Consider the Lie algebra \mathscr{D}^{F} (F for finite) of regular differential operators of degree less than or equal to 1 on \mathbb{C}^{\times}and its subalgebra \mathbf{d}^{F} of vector fields, so that $\left\{z^{j}, d_{j}=z^{j+1} \frac{d}{d z}\right\}_{j \in \mathbb{Z}}$ is a basis of \mathscr{D}^{F} and $\left\{d_{j}\right\}_{n \in \mathbb{Z}}$ is a basis of \mathbf{d}^{F}. The Lie algebra \mathscr{D}^{F} acts in a natural way on the space V_{n} of regular differentials of degree n on \mathbb{C}^{\times}with basis $v_{k}=z^{-k} d z^{n}, k \in \mathbb{Z}$. This gives an inclusion

$$
\phi_{n}: \mathscr{D}^{F} \rightarrow \mathbf{a}_{\infty}^{F},
$$

where \mathbf{a}_{∞}^{F} is the Lie algebra of matrices $\left(a_{i j}\right)_{i, j \in \mathbb{Z}}$ such that $a_{i j}=0$ for $|i-j| \gg 0$. We also consider the restriction of ϕ_{n} to \mathbf{d}^{F} :

$$
\varrho_{n}: \mathbf{d}^{F} \rightarrow \mathbf{a}_{\infty}^{F} .
$$

