Addendum

Some Rigorous Results on the Sherrington-Kirkpatrick Spin Glass Model

M. Aizenman¹, J.L. Lebowitz², and D. Ruelle³

- ¹ Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA
- ² Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

³ I.H.E.S., F-91440 Bures-sur-Yvette, France

Commun. Math. Phys. 112, 3-20 (1987)

The main result of [1] is that in the S-K spin glass model, with the random couplings $\{J_{ij}\}$, for all $\beta J < 1$ the total free energy is of the form $F_0 + \Delta F(\{J\})$ with F_0 an explicitly given function of β [of order O(N)] and ΔF a $\{J_{ij}\}$ - dependent term whose distribution converges, when $N \to \infty$, to that of a shifted Gaussian variable with a given covariance [of order O(1)]. As correctly stated there, this result is derived under the (weak) assumption that the distribution of J_{ij} is symmetric with respect to zero and has finite moments of all orders. The explicit term F_0 was presented in [1] as coinciding with $\lim_{N\to\infty} (\beta)^{-1} \log \operatorname{Av}(Z)$. That identification of F_0 is, however, valid only under the somewhat stronger assumption that $\operatorname{Av}(\exp(\alpha J)) < \infty$ for some $\alpha > 0$ [if not, then $\operatorname{Av}(Z) = \infty$ for all N]. We thank A. Bovier for bringing this point to our attention.

References

 Aizenman, M., Lebowitz, J.L., Ruelle, D.: Some rigorous results on the Sherrington-Kirkpatrick spin glass model. Commun. Math. Phys. 112, 3-20 (1987)

Communicated by A. Jaffe

Received January 19, 1988