

An n-Dimensional Borg-Levinson Theorem

Adrian Nachman^{1*}, John Sylvester^{2**} and Gunther Uhlmann^{3***}

¹ Mathematics Department, University of Rochester, Rochester, NY 14627, USA

² Courant Institute of Math. Science, Mathematics Department, Yale University, and Mathematics Department Duke University, Durham, NC27706, USA

³ Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Abstract. We show that the potential q is uniquely determined by the spectrum, and boundary values of the normal derivatives of the eigenfunctions of the Schrödinger operator $-\Delta + q$ with Dirichlet boundary conditions on a bounded domain Ω in \mathbb{R}^n . This and related results can be viewed as a direct generalization of the theorem in the title, which states that the spectrum and the norming constants determine the potential in the one dimensional case.

1. Introduction

Let q(x) be a real-valued potential in $L^{\infty}[0, 1]$ and let $y(x, \mu)$ solve the initial value problem

$$-y'' + qy = \mu y \text{ for } x \in (0, 1),$$

$$y(0, \mu) = 0,$$

$$y'(0, \mu) = 1.$$

Define the sequence $\{\mu_i(q)\}_{i=1}^{\infty}$ of Dirichlet eigenvalues by the condition

 $y(1, \mu_i) = 0$

and define the norming constants c_i by

$$c_i(q) = \int_0^1 y^2(x, \mu_i) dx.$$

A well known result of Borg [B] and Levinson [L] is

Theorem 1.1. Suppose that $q_1, q_2, \in L^{\infty}(0, 1)$, are real-valued and that, for all i

$$\mu_i(q_1) = \mu_i(q_2)$$

^{*} Supported by NSF grant DMS-8602033

^{**} Supported by NSF grant DMS-8600797

^{***}Supported by NSF grant DMS-8601118 and an Alfred P. Sloan Research Fellowship