Commun. Math. Phys. 115, 247-266 (1988)

One-Dimensional Schrödinger Operators with Random Decaying Potentials

S. Kotani and N. Ushiroya

Department of Mathematics, Kyoto University, Kyoto 606, Japan

Abstract. We investigate the spectrum of the following random Schrödinger operators:

$$H(\omega) = -\frac{d^2}{dt^2} + a(t)F(X_t(\omega)),$$

where $F(X_t(\omega))$ is a Markovian potential studied by the Russian school [8]. We completely describe the transition of the spectrum from pure point type to absolutely continuous type as the decreasing order of a(t) grows. This is an extension to a continuous case of the result due to Delyon-Simon-Souillard [6], who deal with the lattice case.

1. Introduction

In this paper, we will study the one-dimensional Schrödinger operator:

$$H(\omega) = -\frac{d^2}{dt^2} + a(t)F(X_t(\omega))$$
(1.1)

on $L^2(\mathbf{R}, dt)$, where $\{X_t(\omega); t \in \mathbf{R}\}$ is a Brownian motion on a compact Riemannian manifold M with the normalized Riemannian volume element μ as its marginal distribution. Then $\{X_t(\omega); t \in \mathbf{R}\}$ becomes a stationary ergodic process on M. We assume that $F \in C^{\infty}(M)$, $a \in C^{\infty}(\mathbf{R})$, a(t) is non-increasing on $\mathbf{R}_+ = (0, \infty)$, a(t) = a(-t), and $a(t) \to 0$ as $|t| \to \infty$. It is known that $H(\omega)$ defines a self-adjoint operator on $L^2(\mathbf{R}, dt)$.

For a self-adjoint operator *H* on a Hilbert space, we denote by ΣH , $\Sigma_p H$, $\Sigma_{sc} H$, and $\Sigma_{ac} H$ spectrum, point spectrum, singular continuous spectrum and absolutely continuous spectrum of *H* respectively (see Kato [12]). Our interest here is to investigate the existence or non-existence of these components of the spectrum of $H(\omega)$. Since $a(t) \rightarrow 0$ as $|t| \rightarrow \infty$, $H(\omega)$ has only discrete spectrum on $(-\infty, 0)$ if any and $\Sigma H(\omega) \cap [0, \infty) = [0, \infty)$ (Reed and Simon [17]).