Block Spin Approach to the Singularity Properties of the Continued Fractions

Kumiko Hattori¹, Tetsuya Hattori² and Hiroshi Watanabe³

1 Department of Mathematics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

² Department of Physics, Faculty of Science, Gakushuuin University, Toshima-ku, Tokyo 171, Japan ³ Department of Mathematics, Faculty of Science, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan

Abstract. The massless singularity of a ferromagnetic Gaussian measure on

 \mathbb{Z}_+ is studied by means of the coarse graining renormalization group method. The result gives information about a singularity behavior of a continued fraction and a time decay rate of a diffusion (random walk) on \mathbb{Z}_+ .

1. Introduction: Problem and Results

We regard $\mathbb{R}^{\mathbb{Z}_+}$ as a measurable space with the σ -algebra generated by the cylinder subsets of $\mathbb{R}^{\mathbb{Z}_+}$. Let us introduce the notion of ferromagnetic Gaussian measures on $\mathbb{R}^{\mathbb{Z}_+}$. For bounded positive sequences $J = (J_n)_{n \in \mathbb{Z}_+}$ and $g = (g_n)_{n \in \mathbb{Z}_+}$ satisfying

$$\inf_{n \ge 0} g_n > 0, \tag{1.1}$$

the pair (J,g) is called a *ferromagnetic pair*. We define, for a ferromagnetic pair (J,g), matrices H(J) and D(g) by putting, for $n, m \in \mathbb{Z}_+$,

$$H_{nm}(J) = 0, \quad |n - m| > 2,$$

= $J_{n \wedge m}, \quad |n - m| = 1,$
= $-J_{n-1} - J_n, \quad n = m,$ (1.2)

and

$$D_{nm}(g) = \delta_{nm}g_n, \tag{1.3}$$

where $n \wedge m = \min(n, m)$ and $J_{-1} = 0$. The matrix D(g) - H(J) induces a bounded linear operator on $l^{\infty}(\mathbb{Z}_+) = \{(\phi_n)_{n \in \mathbb{Z}_+} | \sup_{n \in \mathbb{Z}_+} | \phi_n | < \infty\}$ and it has a symmetric positive definite inverse (see Lemma 2.1 and 2.2). Then there exists a unique Gaussian probability measure μ_{Jg} on $\mathbb{R}^{\mathbb{Z}_+}$ with mean 0 and covariance $(D(g) - H(J))^{-1}$. We refer to the probability measure μ_{Jg} as the *ferromagnetic Gaussian* measure characterized by (J, g) and write

$$\langle F(\phi) \rangle (J,g) = \int F(\phi) \mu_{Jg}(d\phi)$$