String Quantization on Group Manifolds and the Holomorphic Geometry of Diff $S^{1} / S^{1 \star}$

Jouko Mickelsson*ぇ
Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

The recent results by Bowick and Rajeev on the relation of the geometry of Diff S^{1} / S^{1} and string quantization in $\mathbb{R}^{d, 1}$ are extended to a string moving on a group manifold. A new derivation of the curvature formula $\left(-\frac{26}{12} m^{3}+\frac{1}{6} m\right) \delta_{n,-m}$ for the canonical holomorphic line bundle over Diff S^{1} / S^{1} is given which clarifies the relation of that bundle with the complex line bundles over infinite-dimensional Grassmannians, studied by Pressley and Segal.

I. Introduction

Recently Frenkel, Garland and Zuckerman have formulated the conditions for the consistency of string theory in the flat background $\mathbb{R}^{d, 1}$ as conditions for Lie algebra cohomology for the Virasoro algebra, with coefficients in the Fock space of the string, [FGZ]. The results of Bowick and Rajeev in the Kähler geometry of the complexified tangent bundle of Diff S^{1} / S^{1} can be seen as a step toward globalizing the algebraic approach in [FGZ], i.e. replacing Lie algebra cohomology by group cohomology. In this paper we shall carry out the program of [BR] in the case of a string on a group manifold.

Let G be a simple compact Lie group and $L G$ the space of smooth loops in G, which is a group under point-wise multiplication of maps $S^{1} \rightarrow G$. In string theory, the space $L G$ can be considered either as the configuration space of a closed string moving in the manifold G or as the phase space of an open string. Namely, let $g(\tau, \sigma)$ be an open string parametrized by the time $\tau \in \mathbb{R}$ and the string coordinate $\sigma \in[0, \pi]$ with the boundary conditions $g^{\prime}(\tau, 0)=g^{\prime}(\tau, \pi)=0$; here $g^{\prime}=\frac{d g}{d \sigma}$ and $\dot{g}=\frac{d g}{d \tau}$. One can then introduce a new coordinate $h(\tau, \sigma)$ by

$$
\begin{gathered}
h(\tau, \sigma)=\exp \left[\left(g^{-1} \dot{g}\right)(\tau, \sigma)+\left(g^{-1} g^{\prime}\right)(\tau, \sigma)\right], \quad 0 \leqq \sigma \leqq \pi \\
h(\tau, \sigma)=\exp \left[\left(g^{-1} \dot{g}\right)(\tau,-\sigma)-\left(g^{-1} g^{\prime}\right)(\tau,-\sigma)\right], \quad-\pi \leqq \sigma \leqq 0
\end{gathered}
$$

[^0]
[^0]: * This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under contract \# DE-AC02-76ER03069
 ** Permanent address: Department of Mathematics, University of Jyväskylä, Seminaarinkatu 15, SF-40100 Jyväskylä 10, Finland

