Index of a Family of Dirac Operators on Loop Space* Arthur Jaffe, Andrzej Lesniewski, and Jonathan Weitsman** Harvard University, Cambridge, MA 02138, USA Dedicated to Walter Thirring on his 60th birthday **Abstract.** We use methods of constructive field theory to generalize index theory to an infinite-dimensional setting. We study a family of Dirac operators Q on loop space. These operators arise in the context of supersymmetric nonlinear quantum field models with Hamiltonians $H=Q^2$. In these models Q is self-adjoint and Fredholm. A natural grading operator Γ exists such that $\Gamma Q + Q\Gamma = 0$. We study $Q_+ = P_- QP_+$, where $P_\pm = \frac{1}{2}(1 \pm \Gamma)$ are the orthogonal projections onto the eigenspaces of Γ . We calculate the index $i(Q_+)$ for Wess-Zumino models defined by a superpotential $V(\varphi)$. Here V is a polynomial of degree $n \ge 2$. We establish that $i(Q_+) = n - 1 = \deg \partial V$. In particular, the field theory models have unbroken supersymmetry, and (for $n \ge 3$) they have degenerate vacua. We believe that this is the first index theorem for a Dirac operator that couples infinitely many degrees of freedom. ## I. Introduction In this paper we present index theory for a family of Dirac operators on loop space. Since loop space is infinite-dimensional, the mathematical framework requires careful analysis. Each Dirac operator Q which we study will be associated with a stochastic process over loop space. The most interesting such processes are non-Gaussian. Our mathematical presentation relies on methods of constructive quantum field theory [1] to define and study the infinite-dimensional processes. We proceed by several steps: - 1. We define a family of Dirac operators Q and appeal to a companion paper for mathematical existence theorems [2]. - 2. For each such Q, we introduce a family $Q(\kappa)$, $0 \le \kappa \le \infty$, which interpolates between $Q = Q(\infty)$ and $Q(0) = Q_0 + Q_{i,0}$. Here Q_0 is associated with a Gaussian ^{*} Research supported in part by the National Science Foundation under Grant DMS/PHY-86-45122 ^{**} Hertz Foundation Predoctoral Fellow