Parallel Transport in the Determinant Line Bundle: The Non-Zero Index Case

S. Della Pietra ${ }^{1,2 \star}$ and V. Della Pietra ${ }^{1 \star \star}$
1 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA
2 Theory Group, Physics Department, University of Texas, Austin, TX 78712, USA

Abstract

For a product family of Weyl operators of possibly non-zero index on a compact manifold X, we express parallel transport in the determinant line bundle in terms of the spectral asymmetry of a Dirac operator on $\mathbb{R} \times X$. This generalizes the results of [7], where we dealt only with invertible operators.

0. Introduction

Let X be a compact spin manifold of even dimension with spin bundle $S=S_{+} \oplus S_{-} \rightarrow X$ and let $E \rightarrow X$ be a hermitian vector bundle over X. Let \bar{S} and \bar{E} be the pullbacks of S and E to $\mathbb{R} \times X$ with the induced inner products and let $\bar{\nabla}^{E}$ be a connection on \bar{E}. Thus $\bar{\nabla}^{E}=d_{\mathbb{R}}+\theta+\nabla_{(\cdot)}^{E}$, where $\theta \in \Omega^{1}(\mathbb{R}) \otimes C^{\infty}(X$, End $E)$ and for each $y \in \mathbb{R}, \nabla_{y}^{E}$ is a connection on $E \rightarrow X$. Let ∂_{y} be the Weyl operators $\partial_{y}: L^{2}\left(X, S_{+} \otimes E\right) \mapsto L^{2}\left(X, S_{-} \otimes E\right)$ coupled to the connection ∇_{y}^{E} and the (y-independent) metric on X.

The constructions of [5] applied to these data yield a smooth determinant line bundle \mathscr{L} over \mathbb{R} with a natural hermitian metric and compatible connection. If index $\partial_{y}=0, \mathscr{L}$ has a canonical section. In [8] we assumed that for all $y, \operatorname{Ker} \partial_{y}=0$ and $\operatorname{Ker} \partial_{y}^{\dagger}=0$, and we gave a formula expressing parallel transport in \mathscr{L} in terms of this section and the spectral asymmetry $\eta(H)$ of the formally self-adjoint Dirac operator H on $L^{2}(\mathbb{R} \times X, \bar{S} \otimes \bar{E})$ coupled to the connection $\bar{\nabla}^{E}$ and the product metric on $\mathbb{R} \times X$.

In this paper we investigate parallel transport in the case that index ∂_{y} is not necessarily zero. We continue to assume that $\operatorname{Ker} \partial_{y}=0$, but now weaken the assumption $\operatorname{Ker} \partial_{y}^{\dagger}=0$ by assuming only that there exists a $V_{-} \subset L^{2}\left(X, S_{-} \otimes E\right)$ which is a complement to $\operatorname{Ker} \partial_{y}^{\dagger}$ for all y. Let V_{-}^{\perp} be the orthogonal complement of V_{-}viewed as a trivial sub-bundle of the Hilbert bundle $\mathscr{H}_{-}=$ $\mathbb{R} \times L^{2}\left(X, S_{-} \times E\right)$, and give V_{-}the connection induced by orthogonal projection

[^0]
[^0]: * Supported in part by NSF Grant No. PHY 8605978 and the Robert A. Welch Foundation
 ** Supported in part by NSF Grant No. PHY 8215249

