Parallel Transport in the Determinant Line Bundle: The Non-Zero Index Case

S. Della Pietra^{1,2}* and V. Della Pietra¹**

1 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

2 Theory Group, Physics Department, University of Texas, Austin, TX 78712, USA

Abstract. For a product family of Weyl operators of possibly non-zero index on a compact manifold X, we express parallel transport in the determinant line bundle in terms of the spectral asymmetry of a Dirac operator on $\mathbb{R} \times X$. This generalizes the results of [7], where we dealt only with invertible operators.

0. Introduction

Let X be a compact spin manifold of even dimension with spin bundle $S = S_+ \oplus S_- \to X$ and let $E \to X$ be a hermitian vector bundle over X. Let \overline{S} and \overline{E} be the pullbacks of S and E to $\mathbb{R} \times X$ with the induced inner products and let $\overline{\nabla}^E$ be a connection on \overline{E} . Thus $\overline{\nabla}^E = d_{\mathbb{R}} + \theta + \nabla^E_{(\cdot)}$, where $\theta \in \Omega^1(\mathbb{R}) \otimes C^\infty(X, \text{End } E)$ and for each $y \in \mathbb{R}$, ∇^E_y is a connection on $E \to X$. Let ∂_y be the Weyl operators $\partial_y: L^2(X, S_+ \otimes E) \mapsto L^2(X, S_- \otimes E)$ coupled to the connection ∇^E_y and the (y-independent) metric on X.

The constructions of [5] applied to these data yield a smooth determinant line bundle \mathscr{L} over \mathbb{R} with a natural hermitian metric and compatible connection. If index $\partial_y = 0$, \mathscr{L} has a canonical section. In [8] we assumed that for all y, Ker $\partial_y = 0$ and Ker $\partial_y^{\dagger} = 0$, and we gave a formula expressing parallel transport in \mathscr{L} in terms of this section and the spectral asymmetry $\eta(H)$ of the formally self-adjoint Dirac operator H on $L^2(\mathbb{R} \times X, \overline{S} \otimes \overline{E})$ coupled to the connection $\overline{\nabla}^E$ and the product metric on $\mathbb{R} \times X$.

In this paper we investigate parallel transport in the case that index ∂_y is not necessarily zero. We continue to assume that $\operatorname{Ker} \partial_y = 0$, but now weaken the assumption $\operatorname{Ker} \partial_y^{\dagger} = 0$ by assuming only that there exists a $V_{-} \subset L^2(X, S_{-} \otimes E)$ which is a complement to $\operatorname{Ker} \partial_y^{\dagger}$ for all y. Let V_{-}^{\perp} be the orthogonal complement of V_{-} viewed as a trivial sub-bundle of the Hilbert bundle $\mathscr{H}_{-} = \mathbb{R} \times L^2(X, S_{-} \times E)$, and give V_{-} the connection induced by orthogonal projection

^{*} Supported in part by NSF Grant No. PHY 8605978 and the Robert A. Welch Foundation

^{**} Supported in part by NSF Grant No. PHY 8215249