Parallel Transport in the Determinant Line Bundle: The Zero Index Case

S. Della Pietra^{1,2}* and V. Della Pietra¹**

1 Lyman Laboratory of Physics, Harvard University, Cambridge, MA02138, USA

2 Theory Group, Physics Department, University of Texas, Austin, TX78712, USA

Abstract. For a product family of invertible Weyl operators on a compact manifold X, we express parallel transport in the determinant line bundle in terms of the spectral asymmetry of a Dirac operator on $\mathbf{R} \times X$.

0. Introduction

Let X be a compact spin manifold of even dimension with spin bundle $S = S_+ \bigoplus$ $S_- \to X$, and let $E \to X$ be the hermitian vector bundle over X. Let \overline{S} and \overline{E} be the pullbacks of S and E to $\mathbf{R} \times X$ with the induced inner products, and let $\overline{\nabla}^E$ be a connection on \overline{E} . Thus $\overline{\nabla}^E = d_{\mathbf{R}} + \theta + \nabla^E_{(\cdot)}$, where $\theta \in \Omega^1(\mathbf{R}) \otimes C^{\infty}(X, \text{ End } E)$ and for each $y \in \mathbf{R}$, ∇^E_y is a connection of $E \to X$. Let ∂_y , $y \in \mathbf{R}$, be the Weyl operators ∂_y : $L^2(X, S_+ \otimes E) \mapsto L^2(X, S_- \otimes E)$ coupled to the connection ∇^E_y and the (yindependent) metric on X, and let $\nabla \partial = d_{\mathbf{R}} \partial + [\theta, \partial]$. Let H be the formally self adjoint Dirac operator on $L^2(\mathbf{R} \times X, \overline{S} \otimes \overline{E})$ coupled to $\overline{\nabla}^E$ and the product metric on $\mathbf{R} \times X$. Thus

$$H = \begin{pmatrix} i\left(\frac{\partial}{\partial y} + \theta\left(\frac{\partial}{\partial y}\right)\right) & \partial_y^{\dagger} \\ \partial_y & -i\left(\frac{\partial}{\partial y} + \theta\left(\frac{\partial}{\partial y}\right)\right) \end{pmatrix}.$$

Assume that for all $y \in \mathbf{R}$, ∂_y is invertible (so that ind $\partial_y = 0$), and that for |y| large, $\theta = 0$ and $d\nabla^E/dy = 0$. The main result of this paper is the formula

$$\exp \int_{R} \operatorname{Tr} \partial^{-1} \nabla \partial = \left(\frac{\det \partial_{\infty}^{\dagger} \partial_{\infty}}{\det \partial_{-\infty}^{\dagger} \partial_{-\infty}} \right)^{1/2} \exp \pi i (\eta(H) + \dim \operatorname{Ker} H).$$
(0.1)

Here det $\partial_y^{\dagger} \partial_y$ is the determinant of $\partial_y^{\dagger} \partial_y$, given formally as the product of the

^{*} Supported in party by NSF Grants PHY8605978 and PHY-82-15249 and the Robert A. Welch Foundation

^{**} Supposed in part by NSF Grant PHY-82-15249