

The Chiral Determinant and the Eta Invariant

S. Della Pietra^{1,2,*,**}, V. Della Pietra^{1,*}, and L. Alvarez-Gaumé^{1,*,***}

¹ Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

² Theory Group, Physics Department, University of Texas, Austin, TX 78712, USA

Abstract. For $\{\partial_y\}, y \in \mathbb{R}$, a one parameter family of invertible Weyl operators of possibly non-zero index acting on spinors over an even dimensional compact manifold X, we express the phase of the chiral determinant det $\partial_{-\infty}^{\dagger} \partial_{\infty}$ in terms of the η invariant of a Dirac operator acting on spinors over $\mathbb{R} \times X$.

1. Statement of Results

Let X be a compact spin manifold of even dimension with spin bundle $S = S_+ \oplus S_- \to X$ and let $E \to X$ be a hermitian vector bundle over X. Let $\overline{S} = \mathbb{R} \times S$, $\overline{E} = \mathbb{R} \times S$ be the pullbacks of S and E to $\mathbb{R} \times X$ with the pull-back hermitian inner products, and let $\overline{V}^{\overline{E}}$ be a connection on \overline{E} . Thus $\overline{V}^{\overline{E}} = d_{\mathbb{R}} + \theta + \overline{V}^{E}_{(\cdot)}$, where $\theta \in \Omega^1(\mathbb{R}) \otimes C^{\infty}(X, \operatorname{End} E)$, and for each $u \in \mathbb{R}$, $\overline{V}^{\overline{u}}_u$ is a connection on $E \to X$.

For $u \in \mathbb{R}$, let $\partial_u : C^{\infty}(X, S_+ \otimes E) \mapsto C^{\infty}(X, S_- \otimes E)$ and $D_u : C^{\infty}(X, S \otimes E) \mapsto C^{\infty}(X, S \otimes E)$ be the Weyl and Dirac operators coupled to the metric on X and the connection V_u^E on E. In the decomposition defined by $S = S_+ \oplus S_-, D_u = \begin{pmatrix} \partial_u^{\dagger} \\ \partial_u \end{pmatrix}$. Let H be the formally self-adjoint Dirac operator on $L^2(\mathbb{R} \times X, \overline{S} \otimes \overline{E})$ coupled to the connection $\nabla^{\overline{E}}$ on \overline{E} and the product metric on $\mathbb{R} \times X$. Thus $H = i\Gamma\left(\frac{\partial}{\partial u} + \theta\left(\frac{\partial}{\partial u}\right)\right) + D_{(\cdot)}$, where Γ is the endomorphism of S with $\Gamma = \pm 1$ on S_{\pm} . Assume

1. For all $u \in \mathbb{R}$, $\partial^{\dagger}_{-\infty} \partial_{u}$ is invertible.

2. For |u| large, $\theta = 0$ and $d\nabla^E/du = 0$.

Condition 1 implies that for all u, Ker $\partial_u = 0$ and Ker ∂_u^{\dagger} is a finite dimensional complement in L^2 of Im $\partial_{-\infty}$. Condition 2 implies that for |u| large, ∂_u is independent of u and H is invariant under translations in the \mathbb{R} direction.

^{*} Supported in part by NSF Grant No. PHY-82-15249

^{**} Supported in part by NSF Grant PHY 8605978 and the Robert A. Welch Foundation

^{***} Present address: Theory Division, CERN, CH-1211 Geneva 23, Switzerland