Commun. Math. Phys. 109, 525 536 (1987)

Elliptic Genera and Quantum Field Theory

Edward Witten*

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Abstract. It is shown that in elliptic cohomology – as recently formulated in the mathematical literature – the supercharge of the supersymmetric nonlinear sigma model plays a role similar to the role of the Dirac operator in K-theory. This leads to several insights concerning both elliptic cohomology and string theory. Some of the relevant calculations have been done previously by Schellekens and Warner in a different context.

If *M* is a spin manifold of dimension *n*, we can consider the Dirac operator $i\mathcal{P}$, acting on a field ψ_{α} which is a section of the spinor bundle *S*. More generally, if *R* is any representation of the structure group Spin(*n*) of the tangent bundle, we can consider the Dirac operator acting on a field $\psi_{\alpha i}$, α , and *i* being respectively a spinor index and an index labeling the representation *R*; in mathematical terms, ψ is a section of $S \otimes T_R$, T_R being the Spin(*n*) bundle associated with the representation *R* of Spin(*n*).

In [1], an infinite series of representations R_i , i = 0, 1, 2, ... was singled out. The first few were

$$R_{0} = 1,$$

$$R_{1} = T,$$

$$R_{2} = \Lambda^{2}T \oplus T,$$

$$R_{3} = \Lambda^{3}T \oplus (T \otimes T) \oplus T.$$
(1)

Here 1 is the trivial representation, T is the fundamental (vector) representation of SO(N), and Λ^k denotes the k^{th} antisymmetric tensor product. The special role of these operators was as follows. Let M be a spin manifold with a compact symmetry group G. It is sufficient in what follows to consider an S^1 [i.e., U(1)] subgroup of G. Let K be the generator of this S^1 action. Assuming that the symmetry generated by K lifts to the spinor bundle, K commutes with the Dirac operator $i \mathcal{P}$ (or a

^{*} Supported in part by NSF grants PHY80-19754 and PHY86-16129