The Essentially Commutative Dilations of Dynamical Semigroups on M_n

Burkhard Kümmerer^{1*} and Hans Maassen^{2**}

¹ Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-7400 Tübingen, Federal Republic of Germany

 2 Instituut voor Theoretische Fysica, KU Nijmegen, Toernooiveld, NL-6 525 ED Nijmegen, Netherlands

Abstract. For identity and trace preserving one-parameter semigroups $\{T_t\}_{t\geq 0}$ on the $n \times n$ -matrices M_n we obtain a complete description of their "essentially commutative" dilations, i.e., dilations, which can be constructed on a tensor product of M_n by a commutative W^* -algebra.

We show that the existence of an essentially commutative dilation for T_t is equivalent to the existence of a convolution semigroup of probability measures ρ_t on the group Aut (M_n) of automorphisms on M_n such that $T_t = \int_{Aut(M_n)} \alpha d\rho_t(\alpha)$, and this condition is then characterised in terms of the generator of T_t . There is a one-to-one correspondence between essentially commutative Markov dilations, weak*-continuous convolution semigroups of probability measures and certain forms of the generator of T_t . In particular, certain dynamical semigroups which do not satisfy the detailed balance condition are shown to admit a dilation. This provides the first example of a dilation for such a semigroup.

Introduction

Dilations of semigroups of completely positive operators on W^* -algebras can be studied under two different points of view: If the W^* -algebras are commutative then the semigroup of (completely) positive operators can be interpreted as a semigroup of transition operators, and its Markov dilation turns out to be the corresponding Markov process. Therefore, from a probability theoretic point of view, a Markov dilation is a non-commutative Markov process or a quantum Markov process.

On the other hand a semigroup of completely positive operators on a W^* algebra can be interpreted as an operator algebraic description of an irreversibly behaving physical system. In this frame a dilation is a larger reversibly evolving system from which the irreversible system is recovered by coarse graining.

A fundamental problem in non-commutative probability theory is to find all

^{*} Supported by the Deutsche Forschungsgemeinschaft

^{**} Supported by the Netherlands Organisation for the Advancement of pure research (ZWO)