Semiclassical Resonances Generated by a Closed Trajectory of Hyperbolic Type

C. Gérard¹ and J. Sjöstrand²

¹ Département de Mathématiques, Université de Paris Sud, F-91405 Orsay, France

² Department of Mathematics, University of Lund, Box 118, S-22100 Lund, Sweden

Abstract. We determine all the resonances in certain rectangular regions of the complex plane of the Schrödinger operator $-h^2 \Delta + V$ when $h \rightarrow 0$, under the assumption that the set of trapped points of energy 0 for the classical flow form a closed trajectory and that the corresponding Poincaré map is hyperbolic.

0. Introduction

In this paper we consider a semiclassical differential operator P on \mathbb{R}^n with analytic coefficients, which satisfies all the general assumptions of [6, Sect. 8]. Let $p(x, \xi)$ be the principal symbol in the sense of *h*-pseudodifferential operators. [The most important special case is, of course, when $P = -h^2 \Delta + V(x)$. Then $p = \xi^2 + V(x)$.] We assume that

$$p(x,\xi) = 0 \implies dp \neq 0. \tag{0.1}$$

In the appendix of this paper, we give some generalities concerning the flow of $H_p = \sum p'_{\xi_j} \partial_{x_j} - p'_{x_j} \partial_{\xi_j}$ either in $p^{-1}([-\varepsilon_0, \varepsilon_0])$ or in $p^{-1}(0)$. For $\varrho \in T^* \mathbb{R}^n$, let $]T_-(\varrho), T_+(\varrho)[\ni t \mapsto \exp t H_p(\varrho)$ be the maximal classical trajectory. Here T_+ and $-T_-$ are lower semicontinuous functions of ϱ with values in $]0, +\infty]$. We define the outgoing tail and the incoming tail by

$$\widetilde{\Gamma}^{0}_{\pm} = \left\{ \varrho \in p^{-1}(0); \, \exp t H_{p}(\varrho) \not\rightarrow \infty, \, \text{as } t \to T_{\mp}(\varrho) \right\}.$$

$$(0.2)$$

In the appendix we show among other things, that $K^0 = \tilde{\Gamma}^0_+ \cap \tilde{\Gamma}^0_-$ is a compact set. Our next assumption is then:

$$K^0$$
 is (the image of) a simple closed trajectory
 $\gamma^0: [0, T^0] \rightarrow p^{-1}(0)$ [satisfying $\gamma^0(0) = \gamma^0(T^0)$]. (0.3)

Let p^0 be the corresponding linearized Poincaré map. It is a symplectic automorphism of the normal space of γ^0 in $p^{-1}(0)$ at the point $\gamma^0(0)$, defined as the differential of the smooth map $H^0 \rightarrow H^0$, obtained by following the flow of H_p once around γ^0 . Here $H^0 \subset p^{-1}(0)$ is some smooth hypersurface intersecting γ^0