The Existence of Dendritic Fronts

P. Collet ${ }^{1}$ and J.-P. Eckmann ${ }^{2}$
1 Laboratoire de Physique Théorique Ecole Polytechnique, F-91128 Palaiseau, Cedex, France
2 Département de Physique Théorique Université de Genève, CH-1211 Genève, Switzerland

Abstract

In this paper, we study a fourth order semilinear parabolic equation on the infinite real line. We show that in a certain parameter range, this equation has propagating front solutions (solutions tending to 0 at $+\infty$ and advancing to the right with a speed c) which leave behind them a periodic pattern in the laboratory frame. This is thus an example of spontaneous pattern formation.

Table of Contents

1. Introduction . 39
2. The Equation for the Front. Statement of the Main Theorem 41
3. The Existence of Stationary Solutions . 42
4. The Equation for the Front as a Fixed Point Problem 44
5. Properties of the Amplitude Equation . 47
6. The Space $\mathrm{H}_{\alpha, X}$. 54
7. The Spectrum of the Linear Problem . 55
8. A Stable Manifold Theorem for Maps with Unbounded Linear Part. . 62
9. Properties of the Linear Operator in the Main Sector. 68
10. Perturbation Theory . 78
11. The Fixed Point Problem . 79
12. Bounds on the Approximate Solution . 84
13. Bounds on the Tangent Map . 89

1. Introduction

In this paper, we discuss the existence problem for a certain type of parabolic equation motivated by the physical problem of dendrite formation. It has been pointed out (for several years, by now) that some of the parabolic (integro-) differential equations which are considered in connection with solidification and dendrite formation show, at least in numerical, and also in some physical experiments a very intriguing behaviour. One observes, in general, a one-parameter family of propagating fronts, and it seems that "most" initial data converge to a particular front, thereby leading to a selection of the propagation speed. It is furthermore conjectured that this selected speed coincides with that speed for which

