

The Existence of Dendritic Fronts

P. Collet¹ and J.-P. Eckmann²

- 1 Laboratoire de Physique Théorique Ecole Polytechnique, F-91128 Palaiseau, Cedex, France
- 2 Département de Physique Théorique Université de Genève, CH-1211 Genève, Switzerland

Abstract. In this paper, we study a fourth order semilinear parabolic equation on the infinite real line. We show that in a certain parameter range, this equation has propagating front solutions (solutions tending to 0 at $+\infty$ and advancing to the right with a speed c) which leave behind them a *periodic* pattern in the laboratory frame. This is thus an example of spontaneous pattern formation.

Table of Contents

1.	Introduction
2.	The Equation for the Front. Statement of the Main Theorem 47
3.	The Existence of Stationary Solutions
4.	The Equation for the Front as a Fixed Point Problem
5.	Properties of the Amplitude Equation
6.	The Space $H_{\alpha,X}$
7.	The Spectrum of the Linear Problem
8.	A Stable Manifold Theorem for Maps with Unbounded Linear Part 62
9.	Properties of the Linear Operator in the Main Sector
10.	Perturbation Theory
11.	The Fixed Point Problem
12.	Bounds on the Approximate Solution
13.	Bounds on the Tangent Map

1. Introduction

In this paper, we discuss the existence problem for a certain type of parabolic equation motivated by the physical problem of dendrite formation. It has been pointed out (for several years, by now) that some of the parabolic (integro-) differential equations which are considered in connection with solidification and dendrite formation show, at least in numerical, and also in some physical experiments a very intriguing behaviour. One observes, in general, a one-parameter family of propagating fronts, and it seems that "most" initial data converge to a particular front, thereby leading to a selection of the propagation speed. It is furthermore conjectured that this selected speed coincides with that speed for which