Commun. Math. Phys. 107, 1-20 (1986)

The Stability of Rotating Vortex Patches*

Yieh-Hei Wan**

Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14214, USA

Abstract. In this paper we examine the nonlinear and linear stability of various *rotating* vortex patches. These patches include the Kirchhoff ellipse, the Kelvin waves, and the co-rotating uniform m vortices. These are achieved by using relative variational methods and spectral analysis. Thus, we extend Arnol'd's idea for stability problems in [1965, 1969] to a non-smooth symmetric setting and also relate that to the usual linear stability analysis.

1. Introduction

Consider the motion of an incompressible flow with unit density in R^2 in the absence of external forces. At any instant, the velocity field $(u, v) = (\psi_{\bar{y}}, -\psi_{\bar{x}})$ for some stream function ψ on $R^2 = \{\mathbf{x} = (\bar{x}, \bar{y})\}$. The vorticity $\omega = v_{\bar{x}} - u_{\bar{y}} = -\psi_{\bar{x}\bar{x}} - \psi_{\bar{y}\bar{y}} = -\Delta\psi$. We like to use the vorticity ω as the independent variable. Given ω , let us choose a stream function $\psi = \int G\omega = (1/2\pi) \int_{R^2} \omega(\bar{\mathbf{x}}') \ln (1/|\bar{\mathbf{x}}' - \bar{\mathbf{x}}|) d\mathbf{x}'$, so that the velocity field is zero at infinity. The vorticity evolves according to the vorticity equation: $\omega_t + u\omega_{\bar{x}} + v\omega_{\bar{y}} = 0$. Denote by $\Phi_t(\omega)$ the vorticity at time *t*, with initial vorticity ω .

The energy *E*, the circulation *C*, the centre (\bar{x}_0, \bar{y}_0) , and the angular momentum *J* are preserved under the motion Φ_t . Recall that for a given vorticity ω , $E = \frac{1}{2} \langle \omega, \psi \rangle = \frac{1}{2} \int_{R^2} \omega(\bar{\mathbf{x}}) \psi(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$, $C = \int_{R^2} \omega(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$, $\bar{x}_0 = \int_{R^2} \bar{x} \omega(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$, $\bar{y}_0 = \int_{R^2} \bar{y} \omega(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$, and $J = \int_{R^2} |\bar{\mathbf{x}}|^2 \omega(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$. A vortex patch ω is a vorticity in the form χ_A , where χ_A stands for the characteristic function for a bound (measurable) set *A* in R^2 . χ_{A_j} is called a component of χ_A , if A_j is a component of *A*. Vortex patches and their components are all preserved under the motion Φ_t .

A vortex patch χ_A is said to be *stationary* if $\Phi_t(\chi_A) = \chi_A$ for all $t \ge 0$. A vortex patch is said to be *rotating* if $\Phi_t(\chi_A) = \chi_{R_{\Omega t}A}$ for all $t \ge 0$, where R_{θ} stands for a rotation through angle θ . The Kirchhoff vortices χ_E (see Sect. 4) in which E is an ellipse, are our model for rotating vortex patches. Two families of rotating vortex patches have been found recently. They are (a) the m-fold symmetric "Kelvin" waves

^{**} Supported by National Science Foundation under grant DMS-8501746

^{*} Dedicated to the memory of my grandmother, Lang-Chang Lee Wan