Commun. Math. Phys. 106, 41-89 (1986)

A Mean Field Spin Glass with Short-Range Interactions

J. T. Chayes^{1,*}, L. Chayes^{1,**}, James P. Sethna^{1,***}, and D. J. Thouless^{2,****}

¹ Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

² Department of Physics, University of Washington, Seattle, WA 98195, USA

Abstract. We formulate and study a spin glass model on the Bethe lattice. Appropriate boundary fields replace the traditional self-consistent methods; they give our model well-defined thermodynamic properties. We establish that there is a spin glass transition temperature above which the single-site magnetizations vanish, and below which the Edwards-Anderson order parameter is strictly positive. In a neighborhood below the transition temperature, we use bifurcation theory to establish the existence of a nontrivial distribution of single-site magnetizations. Two properties of this distribution are studied: the leading perturbative correction to the Gaussian scaling form at the transition, and the (nonperturbative) behavior of the tails.

Table of Contents

I. Introduction	42
Ia. History	43
Ib. Organization and Main Results	46
II. Derivation of the Magnetic Recursion Relations	49
IIa. Percolation and Deterministic Ferromagnets	50
IIb. Random Boundary Fields in the Ising Case	53
IIc. Half-Space Systems and the Isotropic Lattice by Quadrature	
III. Analysis of Moments	61
IIIa. Some Parting Remarks About Ferromagnetism	62
IIIb. Location of the Spin Glass Critical Point	64
IIIc. Behavior at p_G .	

^{*} Research supported by the NSF under Grant No. DMR-8314625

^{**} Research supported by the DOE under Grant No. DE-AC02-83ER13044

^{***} Research supported by the NSF under Grant No. DMR-8503544

^{****} Research supported by the NSF under Grant No. DMR-8319301