Communications in
Commun. Math. Phys. 105, 473-509 (1986) Mathematical
Physics

© Springer-Verlag 1986

Classical and Quantum Mechanical Systems
of Toda-Lattice Type

II1. Joint Eigenfunctions of the Quantized Systems

Roe Goodman® and Nolan R. Wallach?
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. In a previous paper it was shown that certain Schrodinger operators
H=A4-V on IR’ such as the Hamiltonians for the quantized one-dimensional
lattice systems of Toda type (either non-periodic or periodic) are part of a
family of mutually commuting differential operators H=L,, ..., L, on R?. The
potential V in these cases is associated with a finite root system of rank /, and
the top-order symbols of the operators L; are a set of functionally independent
polynomials that generate the polynomial invariants for the Weyl group W of
the root system. In this paper it is proved that the spaces of joint eigenfunctions
for the family of operators L; have dimension |W|. In the case of the periodic
Toda lattices it is shown that the Hamiltonian has only bound states. An
integrable holomorphic connection with periodic coefficients is constructed on
a trivial | W|-dimensional vector bundle over €/, and it is shown that the joint
eigenfunctions correspond exactly to the covariant constant sections of this
bundle. Hence the eigenfunctions can be calculated (in principle) by integrating
a system of ordinary differential equations. These eigenfunctions are holom-
orphic functions on €’, and are multivariable generalizations of the classical
Whittaker functions and Mathieu functions. A generalization of Hill’s
determinant method is used to analyze the monodromy of the connection.
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