Classical and Quantum Mechanical Systems of Toda-Lattice Type

III. Joint Eigenfunctions of the Quantized Systems

Roe Goodman¹ and Nolan R. Wallach²

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. In a previous paper it was shown that certain Schrödinger operators $H = \Delta - V$ on \mathbb{R}^{ℓ} such as the Hamiltonians for the quantized one-dimensional lattice systems of Toda type (either non-periodic or periodic) are part of a family of mutually commuting differential operators $H = L_1, \ldots, L_\ell$ on \mathbb{R}^ℓ . The potential V in these cases is associated with a finite root system of rank ℓ , and the top-order symbols of the operators L_i are a set of functionally independent polynomials that generate the polynomial invariants for the Weyl group W of the root system. In this paper it is proved that the spaces of joint eigenfunctions for the family of operators L_i have dimension |W|. In the case of the periodic Toda lattices it is shown that the Hamiltonian has only bound states. An integrable holomorphic connection with periodic coefficients is constructed on a trivial |W|-dimensional vector bundle over \mathbb{C}^{ℓ} , and it is shown that the joint eigenfunctions correspond exactly to the covariant constant sections of this bundle. Hence the eigenfunctions can be calculated (in principle) by integrating a system of ordinary differential equations. These eigenfunctions are holomorphic functions on \mathbb{C}^{ℓ} , and are multivariable generalizations of the classical Whittaker functions and Mathieu functions. A generalization of Hill's determinant method is used to analyze the monodromy of the connection.

Contents

0.). Introduction	•			474
1.	1. Hamiltonians with Long-Range Exponential Potentials				 477
	1.1. Solvable Lie Algebras and Exponential Potentials	•			 477
	1.2. Operators Commuting with the Laplacian				
2.	2. Some Generalities on Certain Rings of Differential Operators	•			 481
	2.1. Rings of Differential Operators				 481
	2.2. Connections				 483

¹ Research partially supported by NSF Grant DMS 83-01582-01

² Research partially supported by NSF Grant DMS 84-02684