Crystals and Quasicrystals: A Continuum Model*

Charles Radin

Mathematics Department, University of Texas, Austin, TX 78712, USA

Abstract. We construct the first model of particles in the plane with completely symmetric, short range, two body interactions which has quasiperiodic, but no periodic, ground states.

1. Introduction

It is a problem of fundamental importance [1-5] to determine why, at low temperature, real matter strongly tends to have crystalline symmetry at the molecular level. The recent discovery [6] of quasicrystalline matter gives further impetus to understand to what extent, and especially by what mechanism, low temperature prescribes the symmetry of configurations of many interacting particles.

Using a grand canonical ensemble for several particle species, the low temperature distribution is concentrated on configurations with low value of $(e - \sum_j m_j d_j)$, where e is the energy density and m_j (respectively d_j) is the chemical potential (respectively particle density) of the *j*th species. The symmetry of these configurations is the matter at issue.

Results on this "crystal problem" [7-23] have concentrated on classical mechanical models, mostly lattice gas models. The problem is essentially solved for one dimension, both for lattice gas [19] and continuum [20] models. Among two dimensional models a class with highly symmetric interactions is known [15, 21, 23] to have periodic ground states. In contrast, recent results [21, 23] have exhibited lattice gas models with *no* periodic ground states.

Using these recent lattice gas models we will construct the first model of particles in the plane (i.e. a continuous model) with completely symmetric, short range, two body interactions which has quasiperiodic, but *no* periodic, ground states. This will require that we also significantly enlarge the class of continuous models known to have periodic ground states.

^{*} Supported in part by NSF Grant No. DMS-8501911