Commun. Math. Phys. 105, 281-290 (1986)

Translation Invariant Gibbs States in the *q*-State Potts Model

D. H. Martirosian

Institute of Mathematics, Armenian Academy of Sciences, Yerevan, USSR

Abstract. We describe the set of all translation invariant Gibbs states in the q-state Potts model for the case of q large enough and the other parameters to be arbitrary.

Introduction

The aim of this note is to describe the set of all translation invariant Gibbs states in the q-state Potts model. We consider only the case of q large enough, assuming the other parameters of the model, i.e. the temperature and the space dimension $v \ge 2$, to be arbitrary. Let \mathbb{Z}^v be v-dimentional lattice, $v \ge 2$. The distance between any two points $x, y \in \mathbb{Z}^v$, $x = (x_1, ..., x_v)$, $y = (y_1, ..., y_v)$, is defined as $d(x, y) = \sum_{i=1}^{v} |x_i - y_i|$. We assume that the spin $\varphi(x), x \in \mathbb{Z}^v$, in the model under consideration takes values in the finite set $Q = \{1, ..., q\}$, and the formal Hamiltonian is written as follows:

$$H = -\sum_{\langle x, y \rangle} \delta_{\varphi(x), \varphi(y)}, \quad \varphi(x), \varphi(y) \in Q, \qquad (1)$$

where the sum is taken over all the pairs of nearest neighbors x, y on the lattice and δ is the Kronecker symbol. By $g(\beta, q)$ [respectively by $g^{(inv)}(\beta, q)$] is denoted the class of all (respectively of all translation invariant) Gibbs states with β parameter and the Hamiltonian (1).

By using reflection positivity Kotecky and Shlosman [1] have proved the coexistence of q + 1 phases at some $\beta_c(q)$ (critical inverse temperature) for q large enough. Another approach to the solution of this problem, based on the contour technique, was offered by E. Dinaburg and Ya. Sinai [2] and independently by Bricmont et al. [3]. Everywhere below we mean that the value of $\beta_c(q)$ is defined namely as in [2], although the next theorem shows that $\beta_c(q)$ is to be unique.

Now we formulate the main result of this paper.

Theorem. For any $v \ge 2$, $q_0(v)$ may be found so that for all $q > q_0(v)$ the following statement is true. There exists such a value $\beta = \beta_c(q)$ of inverse temperature, that