Translation Invariant Gibbs States in the \boldsymbol{q}-State Potts Model

D. H. Martirosian
Institute of Mathematics, Armenian Academy of Sciences, Yerevan, USSR

Abstract

We describe the set of all translation invariant Gibbs states in the q-state Potts model for the case of q large enough and the other parameters to be arbitrary.

Introduction

The aim of this note is to describe the set of all translation invariant Gibbs states in the q-state Potts model. We consider only the case of q large enough, assuming the other parameters of the model, i.e. the temperature and the space dimension $v \geqq 2$, to be arbitrary. Let \mathbb{Z}^{v} be v-dimentional lattice, $v \geqq 2$. The distance between any two points $x, y \in \mathbb{Z}^{v}, \quad x=\left(x_{1}, \ldots, x_{v}\right), y=\left(y_{1}, \ldots, y_{v}\right)$, is defined as $d(x, y)=\sum_{i=1}^{v}\left|x_{i}-y_{i}\right|$. We assume that the spin $\varphi(x), x \in \mathbb{Z}^{v}$, in the model under consideration takes values in the finite set $Q=\{1, \ldots, q\}$, and the formal Hamiltonian is written as follows:

$$
\begin{equation*}
H=-\sum_{\langle x, y\rangle} \delta_{\varphi(x), \varphi(y)}, \quad \varphi(x), \varphi(y) \in Q \tag{1}
\end{equation*}
$$

where the sum is taken over all the pairs of nearest neighbors x, y on the lattice and δ is the Kronecker symbol. By $\mathfrak{g}(\beta, q)$ [respectively by $\left.\mathfrak{g}^{(\text {inv })}(\beta, q)\right]$ is denoted the class of all (respectively of all translation invariant) Gibbs states with β parameter and the Hamiltonian (1).

By using reflection positivity Kotecky and Shlosman [1] have proved the coexistence of $q+1$ phases at some $\beta_{c}(q)$ (critical inverse temperature) for q large enough. Another approach to the solution of this problem, based on the contour technique, was offered by E. Dinaburg and Ya. Sinai [2] and independently by Bricmont et al. [3]. Everywhere below we mean that the value of $\beta_{c}(q)$ is defined namely as in [2], although the next theorem shows that $\beta_{c}(q)$ is to be unique.

Now we formulate the main result of this paper.
Theorem. For any $v \geqq 2, q_{0}(v)$ may be found so that for all $q>q_{0}(v)$ the following statement is true. There exists such a value $\beta=\beta_{c}(q)$ of inverse temperature, that

