Commun. Math. Phys. 105, 107-122 (1986)

Communications in Mathematical Physics © Springer-Verlag 1986

Instantons and Jumping Lines

Jacques Hurtubise

Département de Mathématiques, U.Q.A.M., C.P.8888, Succursale "A", Montreal, Quebec, Canada H3C 3P8

Abstract. We study the behaviour under deformation of holomorphic bundles of rank 2 over $\mathbb{P}_1(\mathbb{C})$. This is then applied to the description of the moduli space \tilde{M}_n of framed SU(2) instantons of charge n; \tilde{M}_n is shown to map to \mathbb{C}^n , with equidimensional fibers. We use this to provide a stratification of \tilde{M}_n and compute the strata explicitly to codimension 4. This then yields $\pi_1(\tilde{M}_n) = \mathbb{Z}_2$, and, for the standard moduli space M_n , $\pi_1(M_n) = 0$ for n odd, \mathbb{Z}_2 for n even.

1. Introduction

By twistor methods, instantons are known to be equivalent to holomorphic vector bundles on $\mathbb{P}_3(\mathbb{C})$ [1]; using the monad construction of Horrocks [12], a description of all solutions was given in [3]. Still, very little is known about the moduli space of solutions; recent work of Donaldson [6] has, however, reduced the problem to classifying certain semi-stable bundles of zero first Chern class on $\mathbb{P}_2 = \mathbb{P}_2(\mathbb{C})$.

It is then natural to try to use this to classify instantons. It turns out that a convenient method for doing this is to restrict the bundle again, to the family of $\mathbb{P}_1(\mathbb{C})$'s in \mathbb{P}_2 through a fixed point, and to study the behaviour of the bundle as one varies the \mathbb{P}_1 in the family. The purpose of this article is thus twofold: to examine the behaviour under deformation of holomorphic vector bundles over $\mathbb{P}_1 = \mathbb{P}_1(\mathbb{C})$, and to apply the information gained to the classification of semi-stable vector bundles over \mathbb{P}_2 ("bundle" is to be taken throughout to mean "holomorphic bundle"; all the results here concern the classification of holomorphic structures).

We have restricted our attention to bundles of rank two, which correspond to the gauge group SU(2). We obtain a description of the moduli of SU(2) instantons; it complements the monad theoretic work of Barth [5] on stable 2-bundles, but is more geometric in nature; it has the advantage of being concrete enough for us to compute, for example, the fundamental group.

Research supported in part by NSERC grant A8361 and by FCAR grant EQ2354