Commun. Math. Phys. 104, 349-352 (1986)

Comments

Symmetry Breaking in Landau Gauge A comment to a paper by T. Kennedy and C. King

Christian Borgs and Florian Nill

Max-Planck-Institut für Physik und Astrophysik, Werner Heisenberg Institut für Physik, Föhringer Ring 6, D-8000 München 40, Federal Republic of Germany

Abstract. For the non-compact abelian lattice Higgs model in Landau gauge Kennedy and King (Princeton preprint, 1985) showed that the two point function $\langle \phi(x)\overline{\phi}(y) \rangle$ does not decay in the Higgs phase. We generalize their methods to show that for the same range of parameters there are states parametrized by an angle $\theta \in [0, 2\pi)$ such that $\langle \phi(x) \rangle_{\text{Landau}}^{\theta} = e^{i\theta} \langle \phi(x) \rangle_{\text{Landau}}^{\theta=0} = 0$.

1. Introduction

In [1] Kennedy and King conjectured that the translation invariant pure phases of the lattice abelian Higgs model in three or more dimensions are parametrized by an angle $\theta \in [0, 2\pi)$ such that

$$\langle \phi(x) \rangle_{\text{Landau}} = c e^{i\theta}$$

with c > 0 in the Higgs region. Since in their paper they use boundary conditions which do not break the global gauge symmetry, they only could show that the two-point function doesn't decay. Using "Dirichlet" boundary conditions as explained below we generalize their methods to prove the following

Theorem 2. In $d \ge 3$, for any $\lambda > 0$ there are states parametrized by an angle $\theta \in [0, 2\pi)$, such that

$$\langle \phi(x) \rangle_{\text{Landau}}^{\theta} = \langle \phi(x) \rangle_{\text{Landau}}^{\theta=0} e^{i\theta},$$

where $\langle \phi(x) \rangle_{\text{Landau}}^{\theta=0} > 0$ is is uniformly bounded away from zero provided $e < e_0$ and $-m^2 > R(\lambda)$ in the notation of Theorem (2.3) of [1].

Remark 1. This provides a *local* (in Landau gauge) order parameter for the phase transition established in [1].

Remark 2. We believe that our construction in fact yields $\langle \phi(x) \rangle = \langle \phi \rangle$ to be translation invariant, but in this comment we only prove it for the fixed length model.