The Spectrum of a Schrödinger Operator in $L_p(\mathbb{R}^v)$ is *p*-Independent

Rainer Hempel and Jürgen Voigt

Mathematisches Institut der Universität München, Theresienstr. 39, D-8000 München 2, Federal Republic of Germany

Abstract. Let $H_p = -\frac{1}{2}\Delta + V$ denote a Schrödinger operator, acting in $L_p(\mathbb{R}^v)$, $1 \le p \le \infty$. We show that $\sigma(H_p) = \sigma(H_2)$ for all $p \in [1, \infty]$, for rather general potentials V.

Introduction. In [12, 13], B. Simon conjectured that $\sigma(H_p)$ is *p*-independent, where $H_p = -\frac{1}{2}\Delta + V$ is a general Schrödinger operator in $L_p(\mathbb{R}^n)$. Partial results on this problem are contained in Simon [12], Sigal [10], Hempel, Voigt [5].

In the notations of Sect. 1, our main result reads as follows.

Theorem. Let $V = V_+ - V_-$, $V_{\pm} \ge 0$, where V_+ is admissible, and $V_- \in \hat{K}_v$ with $c_v(V_-) < 1$. Then $\sigma(H_p) = \sigma(H_2)$ for $1 \le p \le \infty$.

In addition, if λ is an isolated eigenvalue of finite algebraic multiplicity k of H_p , for some $p \in [1, \infty]$, then the same is true for all $p \in [1, \infty]$.

The proof of this result is contained in Propositions 2.1, 3.1, and 2.2.

In Sect. 2 we prove the inclusion $\sigma(H_2) \subset \sigma(H_p)$, following ideas of Simon and Davies.

In Sect. 3 we show that the integral kernel of $(H_2 - z)^{-n}$, for $n \in \mathbb{N}$, n > v/2, defines an analytic $\mathcal{B}(L_p(\mathbb{R}^v))$ -valued function on $\rho(H_2)$, which coincides with $(H_p - z)^{-n}$ for z real and sufficiently negative. This implies $\sigma(H_p) \subset \sigma(H_2)$, by unique continuation.

A different situation, where an integral kernel determines operators with *p-dependent* spectrum, can be found in Jörgens [6; IV, Aufg. 12.11 (b)]; note that the kernel in Jörgens' example is the resolvent kernel of the differential operator

$$-\frac{d}{dx}x^2\frac{d}{dx} \quad \text{on} \quad (0,\infty), \quad \text{at } z = -2.$$

1. Schrödinger Operators in $L_p(\mathbb{R}^v)$

First we recall briefly several facts concerning the semigroup associated with the heat equation. For brevity, we shall write L_p instead of $L_p(\mathbb{R}^v)$, in the sequel