Commun. Math. Phys. 103, 177-240 (1986)

Communications in Mathematical Physics © Springer-Verlag 1986

Differential Equations in the Spectral Parameter *

J. J. Duistermaat¹ and F. A. Grünbaum²

¹ Mathematisch Instituut der Rijksuniversiteit Utrecht, The Netherlands

² Department of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract. We determine all the potentials V(x) for the Schrödinger equation $(-\partial_x^2 + V(x))\phi = k^2\phi$ such that some family of eigenfunctions ϕ satisfies a differential equation in the spectral parameter k of the form $B(k, \partial_k)\phi = \Theta(x)\phi$. For each such V(x) we determine the algebra of all possible operators B and the corresponding functions $\Theta(x)$.

Table of Contents

0. I	ntroduction																			177
1. ($\operatorname{ad} L)^{m+1}(\Theta) = 0$			•																180
2. 1	$V(\infty)$ is Finite																			187
3.]	The Rational KdV Potentials																			192
4. 🗅	The Even Case																			203
5. 7	The Even Potentials Work To	00	•						•				•				•			213
6. J	$V(\infty) = \infty$ is the Airy Case.					•				•										218
7. S	ome Illustrative Examples		•	•	•		•			•	•	•	•	•	•	•		•	•	222

0. Introduction

In this paper we study the following question: For which linear ordinary differential operators $L = \sum_{j=0}^{l} L_j(x) \cdot \left(\frac{\partial}{\partial x}\right)^j$ is there a non-zero family of eigenfunctions $\phi(x, \lambda)$,

$$(L\phi)(x,\lambda) = \lambda \cdot \phi(x,\lambda), \qquad (0.1)$$

depending smoothly on the eigenfunction parameter λ , which is also an eigenfunction of a linear ordinary differential operator $A = \sum_{r=0}^{m} A_r(\lambda) \cdot \left(\frac{\partial}{\partial \lambda}\right)^r$

 $(A\phi)(x,\lambda) = \Theta(x) \cdot \phi(x,\lambda) \tag{0.2}$

for an eigenvalue Θ which is a function of x?

^{*} This research was partially supported by NSF grant DMS 84-03232 and ONR contract NOOO14-84-C-0159