Commun. Math. Phys. 102, 517-519 (1985)

Comments

On the Concept of Attractor: Correction and Remarks

John Milnor

Institute for Advanced Study, Princeton, NJ 08540, USA

The following consists of three unrelated comments on the author's paper [1].

1. Correction

Let f be a continuous map from a compact metric space X to itself, with n^{th} iterate denoted by f^n , and let $A \in X$ be a closed non-vacuous subset with f(A) = A. Consider the following two properties of A.

(I) For any sufficiently small neighborhood U of A, the intersection of the images $f^{n}(U)$ for $n \ge 0$ is equal to A (compare Smale [2, p. 786]).

(II) (Asymptotic stability) For any sufficiently small neighborhood U, the successive images $f^{n}(U)$ converge to A, in the sense that for any neighborhood V there exists n_{0} so that $f^{n}(U) \subset V$, for $n \ge n_{0}$.

In [1, Sect. 1] the author mistakenly described an example satisfying (I) but not (II). (The example was based on a remark of Besicovitch [3], which was corrected in a later paper [4].) In fact, (I) implies (II). The following proof is a minor modification of Hurley [8, Lemma 1.6], which demonstrates a corresponding statement for flows on a compact manifold. The proof shows also that (I) implies the existence of arbitrarily small neighborhoods $W \supset A$ with $f(W) \subset W$.

Proof that (I) *implies* (II). Let U be an open neighborhood which is small enough so that the intersection of the forward images of the closure \overline{U} is equal to A. Let U_n be the open neighborhood consisting of all points x such that $f^i(x) \in U$ for $0 \leq i \leq n$. Thus $U = U_0 \supset U_1 \supset \ldots \supset A$ and $f(U_n) \subset U_{n-1}$. Hence the intersection W of the U_n satisfies $f(W) \in W$. We will show that W is equal to U_n for n sufficiently large, and hence that W is an open set. Otherwise, for infinitely many integers n there must exist a point x_n which belongs to U_n but not U_{n+1} . Let $y_n = f^n(x_n) \in U$. Then we can choose some subsequence of these points y_n which converges to a point $y \in \overline{U}$. Since y_n belongs to the intersection of the sets $f^i(\overline{U})$ for $0 \leq i \leq n$, it follows that y belongs to the intersection of all of the $f^{i}(\overline{U})$, which is equal to A by hypothesis. But $f(y_n) \notin U$, hence $f(y) \notin U$, contradicting the hypothesis that $f(A) = A \in U$. This proves that W is open. Hence the compact set $\overline{W} \in \overline{U}$ is a neighborhood of A with $f(\overline{W}) \in \overline{W}$. It follows easily from compactness that the successive images $\overline{W} \supset f(\overline{W}) \supset f^2(\overline{W}) \supset \dots$ with intersection A actually converge to A in the sense described in (II).