

The Loop Expansion for the Effective Potential in the $P(\phi)_2$ Quantum Field Theory*

Gordon Slade

Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Abstract. We study the loop expansion for the effective potential, defined as the Fenchel transform (convex conjugate) of the pressure in an external field, in the $P(\phi)_2$ quantum field theory. For values of the classical field a for which the classical potential $U_0(a) = P(a) + \frac{1}{2}m^2a^2$ equals its convex hull and has nonvanishing curvature we prove that the 1-PI loop expansion is asymptotic as $\hbar \downarrow 0$. We also give an example of a double well classical potential for which the 1-PI loop expansion fails to be asymptotic, and find the true asymptotics.

1. Introduction

The effective potential for the $P(\phi)_2$ Euclidean quantum field theory is defined as the Fenchel transform of the pressure in an external field:

$$V(\hbar, a) = \sup_{\mu \in \mathbb{R}} \left[\mu a - p(\hbar, \mu) \right]. \tag{1.1}$$

Here the positive parameter \hbar is Planck's constant divided by 2π , the classical field a is real, and $p(\hbar, \mu)$ is given by

$$p(\hbar,\mu) = \hbar \lim_{\Lambda \uparrow \mathbb{R}^2} \frac{1}{|\Lambda|} \ln \int \exp \left[\frac{-1}{\hbar} \int_{\Lambda} \left[:P(\phi(x)) : -\mu \phi(x) \right] dx \right] d\mu_{\hbar C}, \quad (1.2)$$

where $C = (-\Delta + m^2)^{-1}$ for some $m^2 > 0$, $d\mu_{\hbar C}$ is Gaussian measure on $\mathcal{S}(\mathbb{R}^2)$ with covariance $\hbar C$, the Wick order is with respect to $\hbar C$, and $\Lambda \uparrow \mathbb{R}^2$ through a sequence of rectangles. In [14] the limit (1.2) is shown to exist for a wide variety of boundary conditions on $\partial \Lambda$, in particular for periodic boundary conditions which we will use unless otherwise indicated.

The importance of the effective potential is that it characterizes the occurrence of phase transitions in the theory [2, 16]: linear portions of $V(\hbar, \cdot)$ are in a one-

^{*} This paper is a condensed version of the author's Ph.D. thesis for the Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada V6T 1Y4