Commun. Math. Phys. 98, 245-251 (1985)

Borel-Le Roy Summability of the High Temperature Expansion for Classical Continuous Systems

Marco Maioli

Dipartimento di Matematica pura e applicata, Università di Modena, I-41100 Modena, Italy

Abstract. For classical gases with suitable pair interactions such that $\Phi(r) \sim (\ln r^{-1})^p$ as $r \to 0$ ($p \in \mathbb{N}$), the Taylor expansion in β of the correlation functions and the pressure are summable at $\beta = 0$ by the Borel-Le Roy method of order p+1.

I. Introduction

As it is known [5], for classical continuous systems with stable and regular pair potentials the correlation functions and the pressure admit a convergent power series expansion in the activity z, while the typical analyticity region in β $(\beta = (kT)^{-1})$ is the half plane Re $\beta > 0$. As recently proved by Wagner [7], if the pair potential is bounded and absolutely integrable, the correlation functions and the pressure turn out to have Borel summable Taylor expansions at $\beta = 0$ (for Borel summability, see e.g. [4, 6]). Among other facts the proof uses analyticity for Re $\beta > 0$ and the bound $\int |\Phi(x)|^n dx \leq (||\Phi||_{\infty})^{n-1} ||\Phi||_1$.

Here the aim is to prove the Borel-Le Roy summability ([3, 2]) of these power series, under suitable hypotheses on the pair potential $\Phi(r)$. Hypotheses (1), (2), (3) below include, in particular, the asymptotic behaviour $\Phi(r) \sim (\ln r^{-1})^p$ as $r \to 0$ $(p \in \mathbb{N})$. These assumptions allow us to analytically continue the correlation functions beyond the right half plane, to a region containing $\left\{\beta/\operatorname{Re}\beta^{\frac{1}{1+p}}>0\right\}$ on the Riemann surface of $\ln\beta$, which is suggested by the analytic structure of $\int (e^{-\beta\Phi(x)}-1)dx$ in these cases (Proposition 2.1). Moreover the power series remainders are proved not to grow faster than ((p+1)n)!, which is somehow suggested by bounds of the type $\int |\Phi(x)|^n dx \leq c(pn)!$, and by a further factor $(n!)^2$ that can be expected in the estimates of n^{th} derivatives of correlation functions.

In the case v = 2, p = 1, conditions (1), (2), (3) include potentials exponentially decreasing as $r \to +\infty$ and with the asymptotic behaviour of two-dimensional Yukawa potentials (see e.g. [8, 1]) as $r \to 0$, although $\Phi(r) = e^{-ar}(\ln r^{-1})$ is not in this