Borel-Le Roy Summability of the High Temperature Expansion for Classical Continuous Systems

Marco Maioli
Dipartimento di Matematica pura e applicata, Università di Modena, I-41100 Modena, Italy

Abstract

For classical gases with suitable pair interactions such that $\Phi(r) \sim\left(\ln r^{-1}\right)^{p}$ as $r \rightarrow 0(p \in \mathbb{N})$, the Taylor expansion in β of the correlation functions and the pressure are summable at $\beta=0$ by the Borel-Le Roy method of order $p+1$.

I. Introduction

As it is known [5], for classical continuous systems with stable and regular pair potentials the correlation functions and the pressure admit a convergent power series expansion in the activity z, while the typical analyticity region in β $\left(\beta=(k T)^{-1}\right.$) is the half plane $\operatorname{Re} \beta>0$. As recently proved by Wagner [7], if the pair potential is bounded and absolutely integrable, the correlation functions and the pressure turn out to have Borel summable Taylor expansions at $\beta=0$ (for Borel summability, see e.g. [4, 6]). Among other facts the proof uses analyticity for $\operatorname{Re} \beta>0$ and the bound $\int|\Phi(x)|^{n} d x \leqq\left(\|\Phi\|_{\infty}\right)^{n-1}\|\Phi\|_{1}$.

Here the aim is to prove the Borel-Le Roy summability ($[3,2]$) of these power series, under suitable hypotheses on the pair potential $\Phi(r)$. Hypotheses (1), (2), (3) below include, in particular, the asymptotic behaviour $\Phi(r) \sim\left(\ln r^{-1}\right)^{p}$ as $r \rightarrow 0$ $(p \in \mathbb{N})$. These assumptions allow us to analytically continue the correlation functions beyond the right half plane, to a region containing $\left\{\beta / \operatorname{Re} \beta^{\frac{1}{1+p}}>0\right\}$ on the Riemann surface of $\ln \beta$, which is suggested by the analytic structure of $\int\left(e^{-\beta \Phi(x)}-1\right) d x$ in these cases (Proposition 2.1). Moreover the power series remainders are proved not to grow faster than $((p+1) n)$!, which is somehow suggested by bounds of the type $\int|\Phi(x)|^{n} d x \leqq c(p n)$!, and by a further factor $(n!)^{2}$ that can be expected in the estimates of $n^{\text {th }}$ derivatives of correlation functions.

In the case $v=2, p=1$, conditions (1), (2), (3) include potentials exponentially decreasing as $r \rightarrow+\infty$ and with the asymptotic behaviour of two-dimensional Yukawa potentials (see e.g. [8, 1]) as $r \rightarrow 0$, although $\Phi(r)=e^{-a r\left(\ln r^{-1}\right) \text { is not in this }}$

