Convergence of the Quantum Boltzmann Map

R. F. Streater *
Bedford College, Regent's Park, London, NW1 5NS, England

Abstract

We consider a non-linear map on the space of density matrices, which we call the Boltzmann map τ. It is the composition of a doubly stochastic map T on the space of n-body states, and the conditional expectation onto the one-body space. When T is ergodic, then the iterates of τ take any initial state to the uniform distribution. If the energy levels are equally spaced, and T conserves energy and is ergodic on each energy shell, then iterates of τ take any initial state of finite energy to a canonical distribution.

1. Introduction

(1.1) This paper is the quantum version of [1]. Let \mathscr{H} be a Hilbert space with $\operatorname{dim} \mathscr{H}=N \leqq \infty$. A (normal) state ϱ is then a positive operator with unit trace. We denote the set of trace-class operators by $\mathscr{B}(\mathscr{H})_{1}$ and the normal ${ }^{1}$ states by $\sigma(\mathscr{H})$. A stochastic map is a linear map T from $\mathscr{B}(\mathscr{H})$ to $\mathscr{B}(\mathscr{H})$ mapping $\sigma(\mathscr{H})$ to itself and preserving the trace: $\operatorname{Tr}(T \varrho)=\operatorname{Tr} \varrho, \varrho \in \mathscr{B}(\mathscr{H})_{1}$. A doubly stochastic map is a stochastic map T such that $T 1_{N}=1_{N}$, where 1_{N} is the identity on \mathscr{H} [4].

A unitary or anti-unitary conjugation $\varrho \mapsto T \varrho=U \varrho U^{-1}$ is doubly stochastic, as is any convex combination of such maps.
(1.2) Let \mathscr{K} be a Hilbert space, the one-particle space, and
(1.3) let $\mathscr{H}=\mathscr{K} \otimes \ldots \otimes \mathscr{K}$ (n factors) be the n-particle space.

We shall be interested in a doubly stochastic map $T: \mathscr{B}(\mathscr{H}) \rightarrow \mathscr{B}(\mathscr{H})$ that preserves the symmetry under permutations of the factors \mathscr{K}. To such a T we define the corresponding Boltzmann map τ to be the composition of maps:

$$
\begin{equation*}
\varrho \mapsto \varrho \otimes \ldots \otimes \varrho \mapsto T(\varrho \otimes \ldots \otimes \varrho) \mapsto \operatorname{Tr}_{2 \ldots n} T(\varrho \otimes \ldots \otimes \varrho)=\tau(\varrho) . \tag{1.4}
\end{equation*}
$$

Here, $\operatorname{Tr}_{2 \ldots n}$ means the trace over the second, third, $\ldots, n^{\text {th }}$ factors \mathscr{K}. Obviously, (1.4) defines a non-linear map $\tau: \sigma(\mathscr{K}) \rightarrow \sigma(\mathscr{K})$.

[^0]
[^0]: * Present address: Department of Mathematics, Kings College Strand, London WC2 R2LS, England
 1 Normal in the sense [2] of linear functionals on the W^{*}-algebra $\mathscr{B}(\mathscr{H})$, not in the sense of [3]

