Commun. Math. Phys. 98, 177-185 (1985)

Convergence of the Quantum Boltzmann Map

R. F. Streater *

Bedford College, Regent's Park, London, NW1 5NS, England

Abstract. We consider a non-linear map on the space of density matrices, which we call the Boltzmann map τ . It is the composition of a doubly stochastic map T on the space of *n*-body states, and the conditional expectation onto the one-body space. When T is ergodic, then the iterates of τ take any initial state to the uniform distribution. If the energy levels are equally spaced, and T conserves energy and is ergodic on each energy shell, then iterates of τ take any initial state of finite energy to a canonical distribution.

1. Introduction

(1.1) This paper is the quantum version of [1]. Let \mathscr{H} be a Hilbert space with dim $\mathscr{H} = N \leq \infty$. A (normal) state ϱ is then a positive operator with unit trace. We denote the set of trace-class operators by $\mathscr{B}(\mathscr{H})_1$ and the normal ¹ states by $\sigma(\mathscr{H})$. A stochastic map is a linear map T from $\mathscr{B}(\mathscr{H})$ to $\mathscr{B}(\mathscr{H})$ mapping $\sigma(\mathscr{H})$ to itself and preserving the trace: $\operatorname{Tr}(T\varrho) = \operatorname{Tr} \varrho$, $\varrho \in \mathscr{B}(\mathscr{H})_1$. A doubly stochastic map is a stochastic map T such that $T1_N = 1_N$, where 1_N is the identity on \mathscr{H} [4].

A unitary or anti-unitary conjugation $\varrho \mapsto T\varrho = U\varrho U^{-1}$ is doubly stochastic, as is any convex combination of such maps.

(1.2) Let \mathscr{K} be a Hilbert space, the one-particle space, and

(1.3) let $\mathscr{H} = \mathscr{K} \otimes \ldots \otimes \mathscr{K}$ (*n* factors) be the *n*-particle space.

We shall be interested in a doubly stochastic map $T: \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H})$ that preserves the symmetry under permutations of the factors \mathscr{H} . To such a T we define the corresponding *Boltzmann map* τ to be the composition of maps:

(1.4)
$$\varrho \mapsto \varrho \otimes \ldots \otimes \varrho \mapsto T(\varrho \otimes \ldots \otimes \varrho) \mapsto \operatorname{Tr}_{2\ldots n} T(\varrho \otimes \ldots \otimes \varrho) = \tau(\varrho).$$

Here, $\operatorname{Tr}_{2...n}$ means the trace over the second, third, ..., n^{th} factors \mathscr{K} . Obviously, (1.4) defines a non-linear map $\tau : \sigma(\mathscr{K}) \to \sigma(\mathscr{K})$.

^{*} Present address: Department of Mathematics, Kings College Strand, London WC2 R2LS, England

¹ Normal in the sense [2] of linear functionals on the W^* -algebra $\mathscr{B}(\mathscr{H})$, not in the sense of [3]