Renormalization of the Higgs Model: Minimizers, Propagators and the Stability of Mean Field Theory*

Tadeusz Bałaban**, John Imbrie, and Arthur Jaffe Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Dedicated to the memory of Kurt Symanzik

Abstract. We study the effective actions $S^{(k)}$ obtained by k iterations of a renormalization transformation of the U(1) Higgs model in d=2 or 3 spacetime dimensions. We identify a quadratic approximation $S^{(k)}_Q$ to $S^{(k)}$ which we call mean field theory, and which will serve as the starting point for a convergent expansion of the Green's functions, uniformly in the lattice spacing. Here we show how the approximations $S^{(k)}_Q$ arise and how to handle gauge fixing, necessary for the analysis of the continuum limit. We also establish stability bounds on $S^{(k)}_Q$, uniformly in k. This is an essential step toward proving the existence of a gap in the mass spectrum and exponential decay of gauge invariant correlations.

Table of Contents

1.	The Model	. 300
2.	Block Fields and Scaling	302
	The First Renormalization Step	
	Form of the k^{th} Effective Action	
	4.1. The Axial Gauge Propagator and Minimizer	309
	4.2. The Quadratic Action and Plaquette Fields	310
	4.3. Quadratic Action for Curls	
	4.4. Landau Gauge Propagator and Minimizer	311
	4.5. Bond Fields	312
	4.6. The Scalar Field Action	313
5.	Relations Among Minimizers and Propagators	313
	5.1. Change of Gauge for Minimizers	
	5.2. Decomposition of Axial Gauge Green's Functions.	315
	5.3. Minimizers and Green's Functions	316

^{*} Supported in part by the National Science Foundation under Grant PHY 82-03669

^{**} Current address: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA