Commun. Math. Phys. 97, 149–159 (1985)

Indecomposable Representations with Invariant Inner Product

A Theory of the Gupta-Bleuler Triplet

Huzihiro Araki

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Abstract. Consequences of the existence of an invariant (necessarily indefinite) non-degenerate inner product for an indecomposable representation π of a group G on a space \mathfrak{H} are studied. If π has an irreducible subrepresentation π_1 on a subspace \mathfrak{H}_1 , it is shown that there exists an invariant subspace \mathfrak{H}_2 of \mathfrak{H} containing \mathfrak{H}_1 and satisfying the following conditions: (1) the representation $\pi_1^{\#} = \pi \mod \mathfrak{H}_2$ on $\mathfrak{H} \mod \mathfrak{H}_2$ is conjugate to the representation $(\pi_1, \mathfrak{H}_1), (2) \mathfrak{H}_1$ is a null space for the inner product, and (3) the induced inner product on $\mathfrak{H}_2 \mod \mathfrak{H}_1$ is non-degenerate and invariant for the representation

$$\pi_2 = (\pi|_{\mathfrak{H}_2}) \operatorname{mod} \mathfrak{H}_1,$$

a special example being the Gupta-Bleuler triplet for the one-particle space of the free classical electromagnetic field with \mathfrak{H}_1 = space of longitudinal photons and \mathfrak{H}_2 = the space defined by the subsidiary condition.

1. Introduction

In the study of massless particles, one meets [1-6, 9-11, 15, 17-19] indecomposable representations π of a Lie group G on a space \mathfrak{H} (with an invariant indefinite inner product), which take, for example, the following form:

$$\begin{array}{c} \pi_n \to \pi_{n-1} \to \dots \to \pi_1 \\ \mathfrak{H} = \mathfrak{H}_n \supset \mathfrak{H}_{n-1} \supset \dots \supset \mathfrak{H}_1 \end{array} \right\}.$$
(1.1)

Here \mathfrak{H}_j is a $\pi(G)$ -invariant subspace of \mathfrak{H}_{j+1} without any $\pi(G)$ -invariant complement, namely, there are no subspaces \mathfrak{H}'_j such that $\mathfrak{H}_j + \mathfrak{H}'_j = \mathfrak{H}_{j+1}$, $\mathfrak{H}_j \cap \mathfrak{H}'_j = \mathbf{0}, \pi(G)\mathfrak{H}'_j \subset \mathfrak{H}'_j$. The representation π_j of G on $\mathfrak{H}_j/\mathfrak{H}_{j-1}$ is obtained by first restricting π to the subspace \mathfrak{H}_j of \mathfrak{H} and then considering it modulo $\mathfrak{H}_{j-1} : \pi_j(g)[\xi] = [\pi(g)\xi]$ for $\xi \in \mathfrak{H}_j$, where $[\xi] = \xi + \mathfrak{H}_{j-1}$ is a vector in $\mathfrak{H}_j/\mathfrak{H}_{j-1}$. (We note that the construction of representations on a quotient space, especially with respect to a null space, is now a popular game [14].)