Conformal Symmetry in Two Dimensions: An Explicit Recurrence Formula for the Conformal Partial Wave Amplitude

Al. B. Zamolodchikov
Laboratory for Nonlinear Physics, Cybernetics Council of the Academy of Sciences of the USSR, Vavilova St. 40, SU-117333 Moscow B. 333, USSR

Abstract

An explicit recurrence relation for the conformal block functions is presented. This relation permits one to evaluate the X-expansion of these functions order-by-order and appropriate for numerical calculations.

The properties of infinite algebra of infinitesimal conformal transformations of two-dimensional space-time (its central extension is known as Virasoro algebra) and its consequences for field theory are now under extensive investigation [1, 3]. In this theory an important role belongs to the so-called conformal block functions, or "conformal partial amplitudes" [1], which are essentially sums over the "S-channel" contributions of all conformal fields of the same conformal class to the four-point function of a certain set of conformal fields (see ref. 1). For example, the associativity property of operator algebra in conformal field theory can be expressed in terms of these functions as a set of conformal bootstrap equations [1,2]. So, the solution of the conformal bootstrap equations (e.g. numerical) requires an effective method to calculate conformal block functions.

In principle these functions could be evaluated straightforwardly as a series in powers of anharmonic ratio X of the correlation function, solving level-by-level in an appropriately chosen basis the following set of equations in the conformal module space, i.e., the space spanned by all operators of the same conformal class of dimension D :

$$
\begin{equation*}
\left.L(k) \mid n+k)=\left(D+k d_{1}-d_{2}+n\right) \mid n\right), \tag{1}
\end{equation*}
$$

where $L(k)$ are Virasoro generators of infinitesimal conformal transformations and $\mid n)$ is the $n^{\text {th }}$ level contribution to the state

$$
\begin{equation*}
\left.\left.V_{d_{1}}(x) V_{d_{2}}(0) \mid 0\right)=x^{D-d_{1}-d_{2}} \sum x^{n} \mid n\right), \tag{2}
\end{equation*}
$$

which is the intermediate state in the characteristic function:

$$
\begin{equation*}
F\left(D, d_{i}, C, x\right)=\left(0\left|V_{d_{3}}(\infty) V_{d_{4}}(1) V_{d_{1}}(x) V_{d_{2}}(0)\right| 0\right) . \tag{3}
\end{equation*}
$$

