Existence, Uniqueness, and Nondegeneracy of Positive Solutions of Semilinear Elliptic Equations

Joel A. Smoller* and Arthur G. Wasserman
Department of Mathematics, The University of Michigan, Ann Arbor, MI 48109-1003, USA

Abstract

We study positive solutions of the Dirichlet problem: $\Delta u(x)+f(u(x))$ $=0, x \in D^{n}, u(x)=0, x \in \partial D^{n}$, where D^{n} is an n-ball. We find necessary and sufficient conditions for solutions to be nondegenerate. We also give some new existence and uniqueness theorems.

In this paper we study positive solutions of the Dirichlet problem

$$
\begin{gather*}
\Delta u(x)+f(u(x))=0, \quad x \in \Omega, \tag{1}\\
u(x)=0, \quad x \in \partial \Omega, \tag{2}
\end{gather*}
$$

where Ω is an n-ball D_{R}^{n} of radius R. Our original interest was with the degeneracy problem for solutions of (1), (2). That is, we wanted to find conditions under which 0 is not in the spectrum of the linearized equations; in symbols,

$$
\text { if }\left\{\begin{aligned}
& \Delta v(x)+f^{\prime}(u(x)) v(x)=0, \\
& x \in \Omega \\
& v(x)=0, \\
& x \in \partial \Omega
\end{aligned}\right\}, \quad \text { then } \quad v \equiv 0 .
$$

When this holds, we say that the solution u of (1), (2) is non-degenerate; otherwise u is called degenerate. The interest in this notion comes from the fact that the nondegeneracy of a solution allows application of certain topological techniques to it, whereby its stability properties can be investigated [8, Chap. 24, Sect. D]. In pursuing this problem, we were led quite naturally to existence and uniqueness questions for (1), (2), and we also obtain some new results in these directions.

From a result of Gidas et al. [4], all positive solutions of (1), (2) on $\Omega=D_{R}^{n}$ are (monotone decreasing) functions of the radius, and must therefore satisfy a nonautonomous ordinary differential equation. Our uniqueness results follow from a general theorem concerning non-bifurcation of solutions of equations of the form

$$
\begin{equation*}
u^{\prime \prime}+g\left(u, u^{\prime}, t\right)=0, \tag{3}
\end{equation*}
$$

[^0]
[^0]: * Research supported in part by NSF Contract Number MCS 80-02337

