Commun. Math. Phys. 94, 439-458 (1984)

Communications in Mathematical Physics © Springer-Verlag 1984

The Ground State Energy of a Classical Gas*

Joseph G. Conlon**

Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

Abstract. In this paper we study the ground state energy of a classical gas. Our interest centers mainly on Coulomb systems. We obtain some new lower bounds for the energy of a Coulomb gas. As a corollary of our results we can show that a fermionic system with relativistic kinetic energy and Coulomb interaction is stable. More precisely, let $H_N(\alpha)$ be the N particle Hamiltonian

$$H_N(\alpha) = \alpha \sum_{i=1}^N (-\Delta_i)^{1/2} + \sum_{i< j} |x_i - x_j|^{-1} - \sum_{i,j} |x_i - R_j|^{-1} + \sum_{i< j} |R_i - R_j|^{-1},$$

where Δ_i is the Laplacian in the variable $x_i \in \mathbb{R}^3$ and $R_1, ..., R_N$ are fixed points in \mathbb{R}^3 . We show that for sufficiently large α , independent of N, the Hamiltonian $H_N(\alpha)$ is nonnegative on the space of square integrable functions $\psi(x_1, ..., x_N)$, antisymmetric in the variables x_i , $1 \le i \le N$.

Introduction

Consider the N particle Hamiltonian $H_N^R(\alpha)$ defined by

$$H_N^R(\alpha) = \alpha \sum_{i=1}^N (-\Delta_i)^{1/2} + \sum_{i< j} |x_i - x_j|^{-1} - \sum_{i,j} |x_i - R_j|^{-1} + \sum_{i< j} |R_i - R_j|^{-1}, \quad (1.1)$$

where Δ_i is the Laplacian in the variable $x_i \in \mathbb{R}^3$ and $R_1, ..., R_N$ are fixed points in \mathbb{R}^3 . We prove the following:

Theorem 1.1. Let $H_N^R(\alpha)$ act on the space of square integrable functions $\psi(x_1, ..., x_N)$ on \mathbb{R}^{3N} , antisymmetric in the variables x_i , $1 \leq i \leq N$. Then there exists a universal constant α such that $H_N^R(\alpha) \geq 0$.

^{*} Research supported by grants from the Austrian National Science Foundation and University of Missouri research council

^{**} Permanent address: Department of Mathematics, University of Missouri, Columbia, MO 65211, USA