Commun. Math. Phys. 94, 421-437 (1984)

Random Media and Eigenvalues of the Laplacian

S. Ozawa

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan

Abstract. Let β be a fixed number >1. We remove $[m^{\beta}]$ -balls of centers $w_1, \ldots, w_{[m^{\beta}]}$ with the same radius α/m from a bounded domain Ω in \mathbb{R}^3 . We consider the asymptotic behaviour of the k^{th} eigenvalue of the Laplacian in $\Omega \setminus [m^{\beta}$ -balls] under the Dirichlet condition as a random variable on a probability space $(w_1, \ldots, w_{[m^{\beta}]}) \in \Omega^{[m^{\beta}]}$, when $m \to \infty$.

1. Introduction

In the present note we consider a mathematical problem concerning random media. We consider a bounded domain Ω in \mathbb{R}^3 with smooth boundary Γ . We put

$$B(\varepsilon; w) = \{x \in \mathbf{R}^3; |x - w| < \varepsilon\}.$$

Fix $\beta \ge 1$. Let $0 < \mu_1(\varepsilon; w(m)) \le \mu_2(\varepsilon; w(m)) \le \dots$ be the eigenvalues of $-\Delta$ (= -divgrad) in $\Omega_{\varepsilon, w(m)} = \Omega / \bigcup_{i=1}^{\tilde{m}} B(\varepsilon; w_i^{(m)})$ under the Dirichlet condition on its boundary. Here \tilde{m} denotes the largest integer which does not exceed m^β , and w(m) denotes the set of \tilde{m} -points $\{w_i^{(m)}\}_{i=1}^{\tilde{m}} \in \Omega^{\tilde{m}}$. Let V(x) > 0 be C^1 -class function on $\overline{\Omega}$ satisfying

$$\int_{\Omega} V(x) dx = 1 \, .$$

We consider Ω as the probability space with the probability density V(x)dx. Let $\Omega^{\hat{m}} = \prod_{i=1}^{\hat{m}} \Omega$ be the probability space with the product measure. The following result which is an elaboration of Kac's theorem (Kac [3]) was given in Ozawa [5].

Theorem A. Assume that $\beta = 1$. Fix $\alpha > 0$ and k. Then,

$$\lim_{m \to \infty} \mathbb{P}(w(m) \in \Omega^{\tilde{m}}; \quad m^{\delta} | \mu_k(\alpha/m; w(m)) - \mu_k^V| < \varepsilon) = 1$$

holds for any $\varepsilon > 0$ and $\delta \in [0, 1/4)$. Here μ_k^V denotes the k^{th} eigenvalues of $-\Delta + 4\pi \alpha V(x)$ in Ω under the Dirichlet condition on Γ .