Commun. Math. Phys. 94, 289-291 (1984)

Remark on the Continuity of the Density of States of Ergodic Finite Difference Operators

François Delyon* and Bernard Souillard*

Department of Mathematics, Caltech, Pasadena, CA 91125, USA

Abstract. We give an elementary proof that for a large class of *d*-dimensional finite difference operators including tight-binding models for electron propagation and models for harmonic phonons with random masses or couplings, the integrated density of states is a continuous function of the energy.

Let us first consider the self-adjoint finite difference Schrödinger operator acting on $\ell^2(\mathbb{Z}^d)$ defined by

$$(H\psi)(x) = \sum_{\substack{y \in \mathbb{Z}^d \\ |y-x|=1}} \psi(y) + V(x)\psi(x), \quad V(x) \in \mathbb{R}, \quad x \in \mathbb{Z}^d$$
(1)

(if V is unbounded, the set of sequences ψ with finite support is a core for H). $P(]-\infty, E[$) will be the associated spectral projection on the energy interval $]-\infty, E[$, and $P(\{E\})$ the projection on the eigenspace associated with E. We, furthermore, consider a probability measure μ on the potentials $\{V(x)\}_{x \in \mathbb{Z}^d}$, namely, a probability measure $\mathbb{R}^{\mathbb{Z}^d}$ with the σ -algebra generated by cylindrical events, and we suppose μ to be ergodic with respect to the translations of \mathbb{Z}^d . It is then known [1] that

$$k_{A}(E,H) = \frac{1}{|A|} \operatorname{Tr} P(] - \infty, E])\chi_{A}, \qquad (2)$$

where χ_A stands for the characteristic function of a finite subset Λ of \mathbb{Z}^d , converges as $\Lambda \uparrow \mathbb{Z}^d$ for μ -a.a. potential $\{V(x)\}_{x \in \mathbb{Z}^d}$ to a non-random function

$$k(E) = \mathbb{E}_{\mu}(\langle \delta_0, P(] - \infty, E]) \delta_0 \rangle), \qquad (3)$$

where \mathbb{E}_{μ} denotes expectation with respect to the measure μ and δ_0 is the element located at 0 of the canonical basis of $\ell^2(\mathbb{Z}^d)$; k(E) is the integrated density of states and can also be obtained by limits of systems enclosed in finite boxes.

^{*} Permanent address: Centre de Physique Théorique, Ecole Polytechnique, F-91128 Palaiseau Cedex, France