Integrable Euler Equations on SO(4) and their Physical Applications

O. I. Bogoyavlensky
V. A. Steklov Mathematical Institute, The Academy of Sciences of the USSR, SU-117333 Moscow, USSR

Abstract

For the Lie algebra SO (4) (and other six dimensional Lie algebras) we find some Euler's equations which have an additional fourth order integral and are algebraically integrable (in terms of elliptic functions) in a one parameter set of orbits. Integrable Euler's equations having an additional second order integral and generalizing Steklov's case are presented. Equations for rotation of a rigid body having n ellipsoid cavities filled with the ideal incompressible fluid being in a state of homogeneous vortex motion are derived. It is shown that the obtained equations are Euler's equations for the Lie algebra of the group $G_{n+1}=\mathrm{SO}(3) \times \ldots \times \mathrm{SO}(3)$. New physical applications of Euler's equations on $\mathrm{SO}(4)$ are discussed.

1. Introduction and Summary

We consider two classes of six-dimensional Lie algebras L, which are specified by the following commutation relations, that are written down in terms of a basis $X_{i}, Y_{k}(i, j, k=1,2,3)$, in the first class, A,

$$
\begin{gather*}
{\left[X_{i}, X_{j}\right]=\varepsilon_{i j k} n_{k} X_{k}, \quad\left[X_{i}, Y_{j}\right]=\varepsilon_{i j k} n_{k} Y_{k},} \tag{1.1}\\
{\left[Y_{i}, Y_{j}\right]=\varepsilon_{i j k} n_{k} \kappa X_{k},}
\end{gather*}
$$

and in the second class, B

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=\varepsilon_{i j k} n_{k} X_{k}, \quad\left[X_{i}, Y_{j}\right]=0, \quad\left[Y_{i}, Y_{j}\right]=\varepsilon_{i j k} m_{k} Y_{k} \tag{1.2}
\end{equation*}
$$

Here $\varepsilon_{i j k}$ is the totally skew-symmetric tensor, and n_{k}, m_{k}, κ are structure constants. The following Lie algebras belong to class A : $\operatorname{SO}(4)\left(n_{i}=1, \kappa=1\right), \mathrm{SO}(3,1)$ $\left(n_{1}=n_{2}=1, n_{3}=-1, \kappa=-1\right), \mathrm{SO}(2,2)\left(n_{1}=n_{2}=1, n_{3}=-1, \kappa=1\right), E_{3}\left(n_{i}=1\right.$, $\kappa=0), L_{3}\left(n_{1}=n_{2}=1, n_{3}=-1, \kappa=0\right)$ etc. The Lie algebras E_{3} and L_{3} are those corresponding to the groups of motion of the three-dimensional Euclidean and pseudo-Euclidean spaces, respectively. The Lie algebras belonging to class B are $\mathrm{SO}(4)=\mathrm{SO}(3)+\mathrm{SO}(3)\left(n_{i}=1, m_{i}=1\right), \mathrm{SL}(2, R)+\operatorname{SL}(2, R)\left(n_{1}=m_{1}=n_{2}=m_{2}=1\right.$, $\left.n_{3}=m_{3}=-1\right), \mathrm{SO}(3)+\operatorname{SL}(2, R)\left(n_{i}=1, m_{1}=m_{2}=1, m_{3}=-1\right)$ etc.

