Small \hbar Asymptotics for Quantum Partition Functions Associated to Particles in External Yang-Mills Potentials

Robert Schrader^{1, 2, *, †} and Michael E. Taylor^{1, **}

1 Mathematics Department, SUNY, Stony Brook, NY 11794, USA

2 Institute for Theoretical Physics, SUNY, Stony Brook, NY 11794, USA

Abstract. To a gauge field on a principal G-bundle $P \rightarrow M$ is associated a sequence of quantum mechanical Hamiltonians, as Planck's constant $\hbar \rightarrow 0$ and a sequence of representations π_n of G is taken. This paper studies the associated quantum partition functions, trace $\exp(-tH_n)$, and produces a complete asymptotic expansion, as $\hbar \rightarrow 0$, $\hbar = 1/n$, of which the principal term, proportional to the classical partition function, is the familiar classical limit.

1. Introduction

In this paper we study the limit as $\hbar \rightarrow 0$ of the (non-relativistic) quantum partition function associated with the Hamiltonian for motion in a Yang-Mills field. More specifically, let M be a compact Riemannian manifold, and let $P \rightarrow M$ be a principal G-bundle, G a compact connected Lie group. We suppose a connection is given on P; this determines a gauge field. We can regard the connection as a g-valued one-form θ . We have an associated covariant derivative on any associated vector bundle $E = P \times_{\pi} V$, where π is a representation of G on a vector space V. With respect to a local frame, this is given by

$$\nabla_X^{\pi} u = X \cdot u + \pi(\theta(X))u, \qquad (1.1)$$

where X is a tangent vector to M, $u \in C^{\infty}(M, E)$. Here $X \cdot u$ represents the action of X componentwise on u, and $\theta(X)$ is the element of g defined by the connection 1-form θ . In local coordinates, on a coordinate patch $\mathcal{O} \subset M$, with $X = \partial/\partial x_j = \partial_j$ and

$$\theta = \sum A_j(x) dx_j; \qquad A_j \in C^{\infty}(\mathcal{O}, \mathfrak{g}), \qquad (1.2)$$

^{*} Research supported in part by Deutsche Forschungsgemeinschaft and NSF grant NoPhy 81-09011A-01

[†] On leave of absence from Freie Universität, Berlin

^{**} Research supported by NSF grant MCS 820176A01