Exponential Bounds and Semi-Finiteness of Point Spectrum for *N*-Body Schrödinger Operators

Peter A. Perry*

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. For a large class of *N*-body Schrödinger operators *H*, we prove that eigenvalues of *H* cannot accumulate from above at any threshold of *H*. Our proof relies on L^2 exponential upper bounds for eigenfunctions of *H* with explicit constants obtained by modifying methods of Froese and Herbst.

Communications in Mathematical

© Springer-Verlag 1984

In this note we study the point spectrum of certain *N*-body Schrödinger operators. To specify them, let $m_i > 0$ and $x_i \in \mathbb{R}^v$, $1 \le i \le N$, denote the mass and position of the *i*th particle, let $x \in \mathbb{R}^{Nv}$ be given by $x = (x_1, \dots, x_n)$, and let

$$X = \left\{ x \in \mathbb{R}^{N_{\nu}} : \sum_{i=1}^{N} m_i x_i = 0 \right\}$$

with norm

$$|x|^2 = \sum_{i=1}^N 2m_i x_i \cdot x_i,$$

where \cdot is the usual inner product on \mathbb{R}^{ν} . We consider operators H on $L^{2}(X, d\nu)$ (with volume measure determined by the norm $|\cdot|$) of the form

$$H = -\varDelta_X + \sum_{1 \leq i < j \leq N} V_{ij}(x_i - x_j),$$

where $-\Delta_X$ is the Laplace-Beltrami operator on X and the $V_{ij}(y)$ are real-valued, measurable functions on \mathbb{R}^{ν} . Throughout, we assume that

$$V_{ij}(-\Delta+1)^{-1} \quad \text{and} \quad (-\Delta+1)^{-1}(y \cdot \nabla V_{ij})(-\Delta+1)^{-1}$$

are compact as operators on $L^2(\mathbb{R}^v, d^v y), \ 1 \le i, j \le N.$ (1)

Here $-\Delta$ is the Laplacian on $L^2(\mathbb{R}^v, d^v y)$ and ∇V_{ij} is the distributional gradient of V_{ij} . Under these assumptions, H is well-defined as an operator perturbation of $-\Delta_X$ and the crucial "Mourre estimate" holds [1, 4, 6].

^{*} Bantrell Research Fellow in Mathematical Physics