Commun. Math. Phys. 92, 397-403 (1984)

Borel Summability of the Unequal Double Well

S. Graffi¹ and V. Grecchi²

1 Dipartimento di Matematica, Università di Bologna, I-40126 Bologna, Italy

2 Istituto di Matematica, Università di Modena, I-41100 Modena, Italy

Abstract. Unlike the $\varepsilon = 0$ case, the perturbation series of the unequal double well $p^2 + x^2 + 2gx^3 + g^2(1+\varepsilon)x^4$ are Borel summable to the eigenvalues for any $\varepsilon > 0$.

The best known example (see e.g. [13, Sect. XII.4]) of a non-Borel summable perturbation series is represented by the Rayleigh-Schrödinger perturbation expansion (hereafter RSPE) of the standard double well oscillator $H(g) = p^2 + x^2 + x^2(1+gx)^2$ in $L^2(\mathbb{R})$, $g \in \mathbb{R}$. This fact is of course due to the instability of the eigenvalues as $g \rightarrow 0$, i.e. to their asymptotic degeneracy as $g \rightarrow 0$. However there are examples, such as the Herbst and Simon [5] one, $K(g) = p^2 + x^2(1+gx)^2 - 2gx - 1$, in which there is stability but no Borel summability to the eigenvalues. Hence, also on account of recent investigations on Borel summability in four dimensional field theories [6, 7], it could be interesting to relate the lack of summability to some other more subtle physical mechanism of well defined meaning also in a more general context. To this end, T. Spencer has suggested considering the following "unequal" double well oscillator

$$H(g,\varepsilon) = p^{2} + x^{2}(1+gx)^{2} + \varepsilon g^{2}x^{4}, \qquad (1)$$

which in the limit $g \rightarrow 0$ has an infinite action instanton for any $\varepsilon \ge 0$. (A standard reference for the notion of instanton in problems of this type is Coleman [1]; additional discussion can be found in [2, 11].) This model could in addition have some interest in itself: as a matter of fact, in some sense it represents the slightest modification of the non-summable example, and it is natural to ask to what extent the non-summability as "accidental," i.e. how sensitive is its dependence on the choice of the parameters in H(g)? Furthermore it can be easily proved through the Hunziker-Vock technique [8] that any eigenvalue E of $H(0,\varepsilon) \equiv H(0) = p^2 + x^2$ is stable for $g \in \mathbb{R}$ small as an eigenvalue of $H(g,\varepsilon), \varepsilon > 0$, because the second minimum of $V(g,\varepsilon) \equiv x^2(1+gx)^2 + \varepsilon g^2x^4$ tends to $+\infty$ as $g \rightarrow 0, \varepsilon > 0$.