Borel Summability of the Unequal Double Well

S. Graffi ${ }^{1}$ and V. Grecchi ${ }^{2}$
1 Dipartimento di Matematica, Università di Bologna, I-40126 Bologna, Italy
2 Istituto di Matematica, Università di Modena, I-41100 Modena, Italy

Abstract

Unlike the $\varepsilon=0$ case, the perturbation series of the unequal double well $p^{2}+x^{2}+2 g x^{3}+g^{2}(1+\varepsilon) x^{4}$ are Borel summable to the eigenvalues for any $\varepsilon>0$.

The best known example (see e.g. [13, Sect. XII.4]) of a non-Borel summable perturbation series is represented by the Rayleigh-Schrödinger perturbation expansion (hereafter RSPE) of the standard double well oscillator $H(g)=p^{2}+x^{2}$ $+x^{2}(1+g x)^{2}$ in $L^{2}(\mathbb{R}), g \in \mathbb{R}$. This fact is of course due to the instability of the eigenvalues as $g \rightarrow 0$, i.e. to their asymptotic degeneracy as $g \rightarrow 0$. However there are examples, such as the Herbst and Simon [5] one, $K(g)=p^{2}+x^{2}(1+g x)^{2}-2 g x-1$, in which there is stability but no Borel summability to the eigenvalues. Hence, also on account of recent investigations on Borel summability in four dimensional field theories $[6,7]$, it could be interesting to relate the lack of summability to some other more subtle physical mechanism of well defined meaning also in a more general context. To this end, T. Spencer has suggested considering the following "unequal" double well oscillator

$$
\begin{equation*}
H(g, \varepsilon)=p^{2}+x^{2}(1+g x)^{2}+\varepsilon g^{2} x^{4}, \tag{1}
\end{equation*}
$$

which in the limit $g \rightarrow 0$ has an infinite action instanton for any $\varepsilon \geqq 0$. (A standard reference for the notion of instanton in problems of this type is Coleman [1]; additional discussion can be found in $[2,11]$.) This model could in addition have some interest in itself: as a matter of fact, in some sense it represents the slightest modification of the non-summable example, and it is natural to ask to what extent the non-summability as "accidental," i.e. how sensitive is its dependence on the choice of the parameters in $H(g)$? Furthermore it can be easily proved through the Hunziker-Vock technique [8] that any eigenvalue E of $H(0, \varepsilon) \equiv H(0)=p^{2}+x^{2}$ is stable for $g \in \mathbb{R}$ small as an eigenvalue of $H(g, \varepsilon), \varepsilon>0$, because the second minimum of $V(g, \varepsilon) \equiv x^{2}(1+g x)^{2}+\varepsilon g^{2} x^{4}$ tends to $+\infty$ as $g \rightarrow 0, \varepsilon>0$.

