Commun. Math. Phys. 92, 203 - 215 (1983)

Large Solutions for Harmonic Maps in Two Dimensions*

Haim Brezis¹ and Jean-Michel Coron²

1 Département de Mathématiques, Université Paris VI, 4, Place Jussieu, F-75230 Paris Cedex 05, France

2 Département de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

Abstract. We seek critical points of the functional $E(u) = \int_{\Omega} |\nabla u|^2$, where Ω is the unit disk in \mathbb{R}^2 and $u: \Omega \to S^2$ satisfies the boundary condition $u = \gamma$ on $\partial \Omega$. We prove that if γ is not a constant, then *E* has a local minimum which is different from the absolute minimum. We discuss in more details the case where $\gamma(x, y) = (Rx, Ry, \sqrt{1 - R^2})$ and R < 1.

Introduction

Let $\Omega = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 < 1\}$ and $S^2 = \{(x, y, z) \in \mathbb{R}^2; x^2 + y^2 + z^2 = 1\}$. Let $\gamma: \partial \Omega \to S^2$ be given and assume that γ is the restriction to $\partial \Omega$ of some function in $H^1(\Omega; S^2)^1$. We set

$$E(u) = \int_{\Omega} |\nabla u|^2 \quad \text{for} \quad u \in H^1(\Omega; \mathbb{R}^3)$$

and

$$\mathscr{E} = \{ u \in H^1(\Omega; S^2); u = \gamma \quad \text{on} \quad \partial \Omega \}.$$

We seek critical points of E on \mathscr{E} . It is obvious that there exists some $\underline{u} \in \mathscr{E}$ such that

$$E(\underline{u}) = \inf_{\mathscr{E}} E.$$

Our first result is the following:

Theorem 1. If γ is not a constant, there exists a critical point of E on \mathscr{E} which is different from \underline{u} .

1 We use the standard notation for Sobolev spaces:

 $H^1(\Omega; \mathbb{R}^3) = \{ u \in L^2(\Omega; \mathbb{R}^3); \quad u_x, u_y \in L^2(\Omega; \mathbb{R}^3) \} \text{ and }$

$$H^1(\Omega; S^2) = \{ u \in H^1(\Omega; \mathbb{R}^3); \quad u(x, y) \in S^2 \text{ a.e. on } \Omega \}$$

^{*} Work partially supported by US National Science Foundation grant PHY-8116101-A01