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Abstract. We seek critical points of the functional E(u) = [ [Vu|?, where Q is
Q

the unit disk in R? and u: Q — S? satisfies the boundary condition u =y on 0Q.
We prove that if y is not a constant, then E has a local minimum which is
different from the absolute minimum. We discuss in more details the case where

y(x,y) =(Rx,Ry, /1 —R*)and R< 1.

Introduction

Let Q@ ={(x,y)eR? x?>+)*<1} and S$*={(x,y,2)eR?*; x*+)y? +z°=1}. Let
7:0Q — §? be given and assume that y is the restriction to 0Q of some function in
HY(Q;S?)!. We set

E@)= [ |Vu*> for ueH(Q;R%)
Q

and
& ={ueH(Q;S$*);u=y on 0Q}.
We seek critical points of E on &. It is obvious that there exists some ue& such that

E@)=1InfE.
&

Our first result is the following:

Theorem 1. If y is not a constant, there exists a critical point of E on & which is
different from u.
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1 We use the standard notation for Sobolev spaces:

HY(Q; R’) = {ueX(Q; R®); u,u,ecl*Q;R%)} and

HYQ;8%) = {ue H'Q;R%); u(x,y)eS? ae. on Q}



