Commun. Math. Phys. 91, 473-487 (1983)

On an Elaboration of M. Kac's Theorem Concerning Eigenvalues of the Laplacian in a Region with Randomly Distributed Small Obstacles

Shin Ozawa

Department of Mathematics, University of Tokyo 113, Japan

Abstract. We remove *m*-balls of centers w_1, \ldots, w_m with the same radius α/m from a bounded domain Ω in \mathbb{R}^3 with smooth boundary γ . Let $\mu_k(\alpha/m; w(m))$ denote the *k*-th eigenvalue of the Laplacian in $\Omega \setminus \overline{m}$ -balls under the Dirichlet condition. We consider $\mu_k(\alpha/m; w(m))$ as a random variable on a probability space $(w_1, \ldots, w_m) \in \Omega \times \cdots \times \Omega$ and we examine a precise behaviour of $\mu_k(\alpha/m; w(m))$ as $m \to \infty$. We give an elaboration of. M. Kac's theorem.

1. Introduction

We consider a bounded domain Ω in \mathbb{R}^3 with smooth boundary γ . Let $B(\varepsilon;w)$ be the ball defined by $B(\varepsilon;w) = \{x \in \mathbb{R}^3; |x-w| < \varepsilon\}$. Let $0 < \mu_1(\varepsilon;w(m)) \leq \mu_2(\varepsilon;w(m)) \leq \dots$ be the eigenvalues of $-\Delta(= -\operatorname{div} \operatorname{grad})$ in $\Omega_{\varepsilon,w(m)} = \Omega \setminus \bigcup_{i=1}^m B(\varepsilon;w_i^{(m)})$ under the Dirichlet condition on its boundary. Here w(m) denotes the set of *m*-points $\{w_1^{(m)}\}_{i=1}^m$. We arrange $\mu_k(\varepsilon;w(m))$ repeatedly according to their multiplicities.

Let $V(x) \ge 0$ be a C^1 function on $\overline{\Omega}$ satisfying

$$\int_{\Omega} V(x) \, dx = 1.$$

Then, we consider Ω as the probability space with the probability V(x) dx. Let $\Omega^m = \prod_{i=1}^m \Omega$ be the probability space with the product measure.

The aim of this note is to prove the following:

Theorem 1. Fix $\alpha > 0$ and k. Then,

$$\lim_{m \to \infty} \mathbb{P}(w(m) \in \Omega^m; m^{\tilde{\delta}} | \mu_k(\alpha/m; w(m)) - \mu_k^V | < \varepsilon) = 1$$
(1.1)

for any $\varepsilon > 0$ and $\tilde{\delta} \in [0, \frac{1}{4})$. Here μ_k^V denotes the k^{th} eigenvalue of $-\Delta + 4\pi\alpha V(x)$ in Ω under the Dirichlet condition on γ .