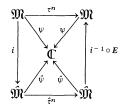
A Markov Dilation of a Non-Quasifree Bloch Evolution

B. Kümmerer and W. Schröder*


Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-7400 Tübingen, Federal Republic of Germany

Abstract. We construct a new minimal dilation of a dynamical system governed by a Bloch equation. In contrast to a dilation of the same dynamical system recently obtained by Varilly [13] our dilation satisfies a Markov property. This presents the first example of a Markov dilation for a non-commutative dynamical system which is not equivalent to a quasifree evolution. Furthermore the dilation turns out to be a generalized K-system.

1. Introduction

In the operator algebraic framework of quantum statistical mechanics we define a *(continuous) dynamical system* by a triple $(\mathfrak{M}, \psi, \tau)$, where \mathfrak{M} is a *W**-algebra, ψ is a faithful normal state on \mathfrak{M} , and τ is a (pointwise weak* continuous) representation of the semigroup \mathbb{N} (respectively \mathbb{R}_+) as completely positive identity preserving operators on \mathfrak{M} leaving ψ invariant. In particular, if these operators are *-automorphisms, $(\mathfrak{M}, \psi, \tau)$ will be called a *conservative dynamical system*.

Given a dynamical system $(\mathfrak{M}, \psi, \tau)$, various reasons raise the problem of constructing a conservative dynamical system $(\hat{\mathfrak{M}}, \hat{\psi}, \hat{\tau})$ containing it in the following sense. There is an injective *-representation $i: \mathfrak{M} \to \hat{\mathfrak{M}}$ and a projection E of norm one of $\hat{\mathfrak{M}}$ onto $i(\mathfrak{M})$ such that the diagram

^{*} Research supported in part by Studienstiftung des deutschen Volkes