Log Hölder Continuity of the Integrated Density of States for Stochastic Jacobi Matrices

Walter Craig and Barry Simon*

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. We consider the integrated density of states, k(E), of a general operator on $\ell_2(\mathbb{Z}^v)$ of the form $h = h_0 + v$, where $(h_0 u)(n) = \sum_{|i|=1}^{n} u(n+i)$ and (vu)(n) = v(n)u(n), where v is a general bounded ergodic stationary process on \mathbb{Z}^v . We show that $|k(E) - k(E')| \leq C[-\log(|E - E'|]^{-1}$ when $|E - E'| \leq \frac{1}{2}$. The key is a "Thouless formula for the strip."

1. Introduction

In this paper, we discuss general multidimensional stochastic Jacobi matrices. Explicitly, let (Ω, μ, Σ) be a probability measure space on which \mathbb{Z}^{ν} acts, that is, ν commuting measure preserving invertible transformations, T_1, \ldots, T_{ν} are given. If $n = (n_1, \ldots, n_{\nu}) \in \mathbb{Z}^{\nu}$, we let $T^n = T_1^{n_1} \ldots T_1^{n_{\nu}}$. We suppose that the action is ergodic. Fix a measurable real valued function f on Ω and let $v_{\omega}(n) \equiv f(T_{\omega}^n)$. On $\ell_2(\mathbb{Z}^{\nu})$ let h_0 be the finite difference Laplacian given by

$$(h_0 u)(n) = \sum_{|\delta| = 1} u(n + \delta),$$
 (1.1)

where the sum is over the 2v nearest neighbors of n. Let v_{ω} be the diagonal operator $(v_{\omega}u)(n) = v_{\omega}(n)u_{\omega}(n)$. We consider the operators

$$h_{\omega} = h_0 + v_{\omega}. \tag{1.2}$$

In the bulk of this paper, we assume that the function $f(\omega)$ is bounded. In fact our main theorem extends, with minor modifications of the proof, to the case that $\ln(|f|+1)$ is in L^1 ; these modifications are sketched in Sect. 3.

Examples of interest include the following cases: (a) The periodic case where Ω is finite and each T_i is periodic. (b) The almost periodic case where Ω is a compact metric space and the T's are isometries (see e.g. [3]). (c) The random case where the process $v_{\omega}(n)$ is a set of independent, identically distributed random variables.

^{*} Also at Department of Physics; Research partially supported by USNSF Grant MCS-81-20833