Commun. Math. Phys. 89, 227-234 (1983)

Kotani Theory for One Dimensional Stochastic Jacobi Matrices*

Barry Simon

Departments of Mathematics and Physics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. We consider families of operators, H_{ω} , on ℓ_2 given by $(H_{\omega}u)(n) = u(n+1) + u(n-1) + V_{\omega}(n)u(n)$, where V_{ω} is a stationary bounded ergodic sequence. We prove analogs of Kotani's results, including that for a.e. $\omega, \sigma_{\rm ac}(H_{\omega})$ is the essential closure of the set of E where $\gamma(E)$ the Lyaponov index, vanishes and the result that if V_{ω} is non-deterministic, then $\sigma_{\rm ac}$ is empty.

1. Introduction

In a beautiful paper, Kotani [10] has proved three remarkable theorems about onedimensional stochastic Schrödinger operators, i.e. operators of the form $-d^2/dx^2 + V_{\omega}(x)$ on $L^2(-\infty,\infty)$, where V_{ω} is a stationary bounded ergodic process. It is not completely straightforward to extend his proofs to the case where $-d^2/dx^2$ is replaced by a finite difference operator, and that is our goal in this note.

Explicitly, let (Ω, μ) be a probability measure space, T a measure preserving invertible ergodic transformation, and f a bounded measurable real-valued function. We define $V_{\omega}(n) = f(T^n \omega)$. We let H_{ω} be the operator on $\ell^2(Z)$

$$(H_{\omega}u)(n) = u(n+1) + u(n-1) + V_{\omega}(n)u(n).$$

Integrals over ω will be denoted by $E(\cdot)$.

Given a subset, J, of Z, we let Σ_J be the sigma-algebra generated by $\{V_{\omega}(n)\}_{n\in J}$. We say that the process is *deterministic* if $\Sigma_{-\infty} \equiv \bigcap_{j=1}^{\infty} \Sigma_{(-\infty, -j)}$ is up to sets of measure zero, $\Sigma_{(-\infty,\infty)}$; equivalently if $V_{\omega}(n)$ is a.e., a measurable function of $\{V_{\omega}(n)\}_{n\leq 0}$. Otherwise it is *non-deterministic*. Almost periodic sequences are deterministic. Independent, identically distributed random variables are non-deterministic.

The Lyaponov index $\gamma(E)$ is defined, for example, in [1, 4]. It can be characterized as follows: For each complex *E*, for a.e. ω , any solution of $H_{\omega}u = Eu$ (in sequence sense) has $\lim_{n \to \infty} \frac{1}{n} \ln [|u(n)|^2 + |u(n+1)|^2]^{1/2}$ exists and it is either γ or $-\gamma$. It is an

^{*} Research partially supported by USNSF under Grant MCS-81-20833