Commun. Math. Phys. 88, 479-501 (1983)

On the Invariant Sets of a Family of Quadratic Maps

M. F. Barnsley*, J. S. Geronimo**, and A. N. Harrington

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract. The Julia set B_{λ} for the mapping $z \rightarrow (z - \lambda)^2$ is considered, where λ is a complex parameter. For $\lambda \ge 2$ a new upper bound for the Hausdorff dimension is given, and the monic polynomials orthogonal with respect to the equilibrium measure on B_{λ} are introduced. A method for calculating all of the polynomials is provided, and certain identities which obtain among coefficients of the three-term recurrence relations are given. A unifying theme is the relationship between B_{λ} and λ -chains $\lambda \pm 1/(\lambda \pm 1/(\lambda \pm ...))$, which is explored for $-\frac{1}{4} \le \lambda \le 2$ and for $\lambda \in \mathbb{C}$ with $|\lambda| \le \frac{1}{4}$, with the aid of the Böttcher equation. Then B_{λ} is shown to be a Hölder continuous curve for $|\lambda| < \frac{1}{4}$.

1. Introduction

In this paper we consider the Julia set B_{λ} for the mapping

$$T_{\lambda}z = (z-\lambda)^2, \quad z \in \mathbb{C},$$

of the complex plane into itself, where λ is a parameter which may be real or complex. Here T_{λ} is equivalent to $z \rightarrow 1 - \lambda z^2$ which has been studied in the context of iterated maps of intervals, see [10, 13], and also to $z \rightarrow z^2 + \lambda$, see [11].

 B_{λ} was first studied by Fatou [12] and Julia [19] in the context of arbitrary rational transformations. With the notation

$$T_{\lambda}^{0}z = z$$
, and $T_{\lambda}^{n+1}z = T_{\lambda}(T_{\lambda}^{n}z)$ for $n \in \{1, 2, 3, \ldots\}$,

 B_{λ} can be defined to be those points in \mathbb{C} where $\{T_{\lambda}^{n}z\}$ is not normal. This is the starting point of the survey by Brolin [8]. Equivalently B_{λ} can be defined to be the closure of the set of all repulsive k-cycles, $k \in \{1, 2, 3, ...\}$, [12]. This shows at once the relevance of B_{λ} to the corresponding iterated real map where $B_{\lambda} \cap \mathbb{R}$ plays a central role.

^{*} Supported by NSF Grant MCS-8104862

^{**} Supported by NSF Grant MCS-8002731