On the Invariant Sets of a Family of Quadratic Maps

M. F. Barnsley^, J. S. Geronimo ${ }^{\star \star}$, and A. N. Harrington
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

The Julia set B_{λ} for the mapping $z \rightarrow(z-\lambda)^{2}$ is considered, where λ is a complex parameter. For $\lambda \geqq 2$ a new upper bound for the Hausdorff dimension is given, and the monic polynomials orthogonal with respect to the equilibrium measure on B_{λ} are introduced. A method for calculating all of the polynomials is provided, and certain identities which obtain among coefficients of the threeterm recurrence relations are given. A unifying theme is the relationship between B_{λ} and λ-chains $\lambda \pm V\left(\lambda \pm V(\lambda \pm \ldots)\right.$, which is explored for $-\frac{1}{4} \leqq \lambda \leqq 2$ and for $\lambda \in \mathbb{C}$ with $|\lambda| \leqq \frac{1}{4}$, with the aid of the Böttcher equation. Then B_{λ} is shown to be a Hölder continuous curve for $|\lambda|<\frac{1}{4}$.

1. Introduction

In this paper we consider the Julia set B_{λ} for the mapping

$$
T_{\lambda} z=(z-\lambda)^{2}, \quad z \in \mathbb{C},
$$

of the complex plane into itself, where λ is a parameter which may be real or complex. Here T_{λ} is equivalent to $z \rightarrow 1-\lambda z^{2}$ which has been studied in the context of iterated maps of intervals, see [10,13], and also to $z \rightarrow z^{2}+\lambda$, see [11].
B_{λ} was first studied by Fatou [12] and Julia [19] in the context of arbitrary rational transformations. With the notation

$$
T_{\lambda}^{0} z=z, \quad \text { and } \quad T_{\lambda}^{n+1} z=T_{\lambda}\left(T_{\lambda}^{n} z\right) \text { for } n \in\{1,2,3, \ldots\},
$$

B_{λ} can be defined to be those points in \mathbb{C} where $\left\{T_{\lambda}^{n} z\right\}$ is not normal. This is the starting point of the survey by Brolin [8]. Equivalently B_{λ} can be defined to be the closure of the set of all repulsive k-cycles, $k \in\{1,2,3, \ldots\},[12]$. This shows at once the relevance of B_{λ} to the corresponding iterated real map where $B_{\lambda} \cap \mathbb{R}$ plays a central role.

[^0]
[^0]: * Supported by NSF Grant MCS-8104862
 ** Supported by NSF Grant MCS-8002731

