© Springer-Verlag 1982

On The Spectrum of Schrödinger Operators with a Random Potential

Werner Kirsch¹ and Fabio Martinelli²

- 1 Institut für Mathematik, Ruhr-Universität Bochum, D-4630 Federal Republic of Germany
- 2 Istituto di Fisica G. N. F. M., Università di Roma, Roma, Italy

Abstract. We investigate the spectrum of Schrödinger operators H_{ω} of the type: $H_{\omega} = -\Delta + \Sigma q_i(\omega) f(x - x_i + \xi_i(\omega)) (q_i(\omega))$ and $\xi_i(\omega)$ independent identically distributed random variables, $i \in \mathbb{Z}^d$. We establish a strong connection between the spectrum of H_{ω} and the spectra of deterministic periodic Schrödinger operators. From this we derive a condition for the existence of "forbidden zones" in the spectrum of H_{ω} . For random one- and three-dimensional Kronig-Penney potentials the spectrum is given explicitly.

Introduction

In this paper we study the spectra of random Schrödinger operators H_{ω} of the form:

$$H_{\omega} = -\Delta + \sum q_i(\omega) f(x - x_i + \xi_i(\omega)),$$

where $\{x_i\}_{i\in\mathbb{Z}^d}$ is a Bravais Lattice and $\{q_i\}_{i\in\mathbb{Z}^d}$ and $\{\xi_i\}_{i\in\mathbb{Z}^d}$ are independent, identically distributed random variables. Physically speaking H_{ω} corresponds to a random "charge"-configuration $\{q_i(\omega)\}$, each $q_i(\omega)$ being located at the random position $x_i - \xi_i(\omega)$ and producing a potential $q_i(\omega)$ $f(x - x_i + \xi_i(\omega))$. Thus H_{ω} can be used as the Hamiltonian of a model for a "mixed" crystal with centers of strength $q_i(\omega)$ at perturbed lattice positions $x_i - \xi_i(\omega)$ or of a model of a liquid.

Models of this kind were considered by many authors, see for example: Halperin [10], Frisch and Lloyd [7], Luttinger [15], Borland [4], Lieb and Mattis [14] and references therein. Random operators of a more or less different kind are studied e.g. in Pastur [18] and [19], Kunz and Souillard [13], Fukushima, Nagai and Nakao [8], Nakao [17] and references given there.

In [11] the present authors showed that the spectrum of a wide class of random operators, containing the H_{ω} given above, is a nonrandom set Σ . In the present paper we determine the spectrum of the above operator more precisely.

In the first section we give conditions under which the operator H_{ω} is well defined and moreover essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^d)$, the infinitely differentiable