Monopoles and Geodesics

N. J. Hitchin
St. Catherine's College, Oxford OX1 3UJ, England

Abstract

Using the holomorphic geometry of the space of straight lines in Euclidean 3-space, it is shown that every static monopole of charge k may be constructed canonically from an algebraic curve by means of the Atiyah-Ward Ansatz \mathscr{A}_{k}.

1. Introduction

It has been known for some time that the Bogomolny equations, describing static Yang-Mills-Higgs monopoles in the Prasad-Sommerfield limit, may be solved by twistor methods. Indeed, they can be reinterpreted as the self-duality equations in Euclidean four-space which are in addition time-translation invariant, and the methods of Penrose, Ward and Atiyah may be applied directly. During the past year significant progress has been made using this line of attack by Ward [15, 16], Prasad and Rossi [12], and Corrigan and Goddard [7]. They all use a variant of the Atiyah-Ward \mathscr{A}_{k}-Ansatz [3] to construct an $\mathrm{SU}(2)$ monopole of charge k. The main purpose of this paper is to show that every solution of the Bogomolny equations satisfying the appropriate boundary conditions can be constructed in a canonical manner by this method.

Our approach is again twistorial, but instead of passing from a problem in 3 -space to one in 4 -space, we use complex methods intrinsically associated to the Euclidean geometry of \mathbb{R}^{3}. We replace the set of points of \mathbb{R}^{3} by the space of oriented geodesics (straight lines). This has the structure of a complex surface (in fact, the holomorphic tangent bundle \mathbf{T} to the projective line) and a solution to the Bogomolny equations gives rise in a natural manner to a holomorphic vector bundle over this surface. Actually, this approach to problems in Euclidean space is by no means new - it was used by Weierstrass in 1866 to solve the minimal surface equations.

Briefly, our method consists of defining a vector bundle \tilde{E} over the surface \mathbf{T} of geodesics by associating to each straight line the null space of the differential operator

$$
D=\nabla_{u}-i \Phi,
$$

