Construction of Euclidean (QED) ${ }_{2}$ via Lattice Gauge Theory

Boundary Conditions and Volume Dependence*

K. R. Ito
Department of Mathematics, Bedford College, University of London, Regent's Park, London NW1 4NS, England

Abstract

Let $v=\operatorname{det}_{\text {ren }}\left(1+K_{g}\right)$ be the renormalized Matthews-Salam determinant of $(\mathrm{QED})_{2}$, where $K_{g}=i e S A_{g}, S=\left(\sum \gamma_{\mu} \partial_{\mu}+m\right)^{-1}$ is euclidean fermion propagator of one of the following boundary conditions : (1) free, (2) periodic at $\partial \Lambda, \Lambda=[-L / 2 ; L / 2]^{2}$, (3) anti-periodic at $\partial \Lambda$, and $A_{g}(x)=\left(\sum \gamma_{\mu} A_{\mu}(x)\right) g(x)$. Here $g(x)=1$ if $x \in \Lambda_{0}=[-r / 2, r / 2]^{2} \subset \Lambda$ and 0 otherwise. Then we show (i) $v \in L^{p}(d \mu(A)), p>0$. Further we prove a new determinant inequality which holds for the QED, QCD-type models containing fermions. This enables us to prove: (ii) $Z\left(\Lambda_{0}\right)=\int v d \mu(A) \leqq \exp \left[c\left|\Lambda_{0}\right|\right]$. Similar volume dependence is shown for the Schwinger functions.

1. Introduction

Several years ago, the author tried to construct (QED) 2_{2} taking a basis on a Hamiltonian formalism of QED, where an indefinite metric is explicitly used to ensure the renormalizability. Because of the indefinite matric, however, there are difficulties : for example it is difficult to prove the existence of the vacuum vector [2].

Recently Weingarten [10] proved the integrability of the renormalized Matthews-Salam determinant $\quad v=\operatorname{det}_{\text {ren }}\left(1+K_{A}\right)$, where $\quad K_{A}=i e S A$, $S=\left(\sum \gamma_{\mu} \partial_{\mu}+m\right)^{-1}$ the euclidean fermion propagator which satisfies anti-periodic boundary conditions at $\partial \Lambda, \Lambda=[-L / 2, L / 2]^{2}, A(x)=\sum \gamma_{\mu} A_{\mu}(x)$ and $\left\{A_{\mu}(x)\right\}$ are the euclidean vector fields which satisfy the periodic boundary conditions at $\partial \Lambda$. The anti-periodic boundary condition of S comes from the use of the transfer matrix to prove the diamagnetic inequality. In this work we show the integrability of v for any one of the following boundary conditions of S and A_{μ} :
S; free, periodic, anti-periodic boundary conditions,
A_{μ}; free, periodic, anti-periodic, boundary conditions.

[^0]
[^0]: * Supported by SRC

