Commun. Math. Phys. 83, 537-561 (1982)

Construction of Euclidean (QED)₂ via Lattice Gauge Theory

Boundary Conditions and Volume Dependence*

K. R. Ito

Department of Mathematics, Bedford College, University of London, Regent's Park, London NW1 4NS, England

Abstract. Let $v = \det_{ren}(1 + K_g)$ be the renormalized Matthews-Salam determinant of $(\text{QED})_2$, where $K_g = ieS A_g$, $S = (\sum \gamma_\mu \partial_\mu + m)^{-1}$ is euclidean fermion propagator of one of the following boundary conditions : (1) free, (2) periodic at ∂A , $A = [-L/2; L/2]^2$, (3) anti-periodic at ∂A , and $A_g(x) = (\sum \gamma_\mu A_\mu(x))g(x)$. Here g(x) = 1 if $x \in A_0 = [-r/2, r/2]^2 \subset A$ and 0 otherwise. Then we show

(i) $v \in L^p(d\mu(A))$, p > 0. Further we prove a new determinant inequality which holds for the QED, QCD-type models containing fermions. This enables us to prove:

(ii) $Z(\Lambda_0) = \int v d\mu(A) \leq \exp[c|\Lambda_0|]$. Similar volume dependence is shown for the Schwinger functions.

1. Introduction

Several years ago, the author tried to construct $(QED)_2$ taking a basis on a Hamiltonian formalism of QED, where an indefinite metric is explicitly used to ensure the renormalizability. Because of the indefinite matric, however, there are difficulties: for example it is difficult to prove the existence of the vacuum vector [2].

Recently Weingarten [10] proved the integrability of the renormalized Matthews-Salam determinant $v = \det_{ren}(1 + K_A)$, where $K_A = ieSA$, $S = (\sum \gamma_{\mu}\partial_{\mu} + m)^{-1}$ the euclidean fermion propagator which satisfies anti-periodic boundary conditions at ∂A , $A = [-L/2, L/2]^2$, $A(x) = \sum \gamma_{\mu}A_{\mu}(x)$ and $\{A_{\mu}(x)\}$ are the euclidean vector fields which satisfy the periodic boundary conditions at ∂A . The anti-periodic boundary condition of S comes from the use of the transfer matrix to prove the diamagnetic inequality. In this work we show the integrability of v for any one of the following boundary conditions of S and A_{μ} :

S; free, periodic, anti-periodic boundary conditions,

 A_{μ} ; free, periodic, anti-periodic, boundary conditions.

^{*} Supported by SRC